Direct cytotoxicity produced by adenoviral-mediated interferon α infection in interferon resistant cancer cells Involves ER stress and caspase 4 activation

Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA.
Cancer gene therapy (Impact Factor: 2.42). 06/2011; 18(9):609-16. DOI: 10.1038/cgt.2011.26
Source: PubMed


Over the past several years we have obtained considerable evidence indicating that adenoviruses-expressing interferon α (Ad-IFNα) can overcome resistance to the IFNα protein itself. Since cancer cells infected with Ad-IFNα also show high perinuclear cytoplasmic IFNα expression, we were interested in whether endoplasmic reticulum (ER) stress and cleavage of caspase 4 could have a major role in Ad-IFNα-produced cancer cell death. Indeed, procaspase 4 was upregulated and cleaved as early as 12 h after Ad-IFNα infection of the cancer cells, which co-localized with IFNα staining and ER tracker. In contrast, immortalized normal human urothelial cells, although exhibiting similar perinuclear IFNα staining, showed no cleaved caspase 4. Caspase 4 cleavage was not blocked by the caspase 8 specific inhibitor zIETD, indicating that caspase 4 activation was independent of caspase 8 activation. Blocking caspase 4 also inhibited activation of caspase 3 in Ad-IFNα containing cells. Finally, the cleaved form of caspase 4 (p10) was detected in Ad-IFNα-positive cancer cells from the urine of a patient following intravesical Ad-IFNα/Syn3 treatment. Therefore, ER stress and activation of caspase 4 appears to be an important mechanism involved in the direct cancer cell death produced by Ad-IFNα and also occurs in the clinical setting.

0 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors (statins) are cholesterol-lowering drugs that exert other cellular effects and underlie their beneficial health effects, including those associated with myocardial remodeling. We recently demonstrated that statins induces apoptosis and autophagy in human lung mesenchymal cells. Here, we extend our knowledge showing that statins simultaneously induces activation of the apoptosis, autophagy and the unfolded protein response (UPR) in primary human atrial fibroblasts (hATF). Thus we tested the degree to which coordination exists between signaling from mitochondria, endoplasmic reticulum and lysosomes during response to simvastatin exposure. Pharmacologic blockade of the activation of ER-dependent cysteine-dependent aspartate-directed protease (caspase)-4 and lysosomal cathepsin-B and -L significantly decreased simvastatin-induced cell death. Simvastatin altered total abundance and the mitochondrial fraction of proapoptotic and antiapoptotic proteins, while c-Jun N-terminal kinase/stress-activated protein kinase mediated effects on B-cell lymphoma 2 expression. Chemical inhibition of autophagy flux with bafilomycin-A1 augmented simvastatin-induced caspase activation, UPR and cell death. In mouse embryonic fibroblasts that are deficient in autophagy protein 5 and refractory to autophagy induction, caspase-7 and UPR were hyper-induced upon treatment with simvastatin. These data demonstrate that mevalonate cascade inhibition-induced death of hATF manifests from a complex mechanism involving co-regulation of apoptosis, autophagy and UPR. Furthermore, autophagy has a crucial role in determining the extent of ER stress, UPR and permissiveness of hATF to cell death induced by statins.
    Cell Death & Disease 06/2012; 3(6):e330. DOI:10.1038/cddis.2012.61 · 5.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: A phase I trial of intravesical recombinant adenovirus mediated interferon-α2b gene therapy (rAd-IFNα) formulated with the excipient SCH Syn3 was conducted in patients with nonmuscle invasive bladder cancer who had disease recurrence after treatment with bacillus Calmette-Guérin. The primary objective was to determine the safety of rAd-IFNα/Syn3. Secondary end points were demonstrated effective rAd-IFNα gene expression and preliminary evidence of clinical activity at 3 months. Materials and methods: A total of 17 patients with recurrent nonmuscle invasive bladder cancer after bacillus Calmette-Guérin treatment were enrolled in the study. A single treatment of rAd-IFNα (3 × 10(9) to 3 × 10(11) particles per ml) formulated with the excipient Syn3 was administered. Patient safety was evaluated for 12 or more weeks. Efficacy of gene transfer was determined by urine IFNα protein concentrations. Preliminary drug efficacy was determined at 3 months. Results: Intravesical rAd-IFNα/Syn3 was well tolerated as no dose limiting toxicity was encountered. Urgency was the most common adverse event and all cases were grade 1 or 2. rAd-IFNα DNA was not detected in the blood. However, transient low serum IFNα and Syn3 levels were measured. High and prolonged dose related urine IFNα levels were achieved with the initial treatment. Of the 14 patients treated at doses of 10(10) or more particles per ml with detectable urine IFNα, 6 (43%) experienced a complete response at 3 months and 2 remained disease-free at 29.0 and 39.2 months, respectively. Conclusions: Intravesical rAd-IFNα/Syn3 was well tolerated with no dose limiting toxicity encountered. Dose dependent urinary IFNα concentrations confirmed efficient gene transfer and expression. Intravesical rAd-IFNα/Syn3 demonstrated clinical activity in nonmuscle invasive bladder cancer recurring after bacillus Calmette-Guérin.
    The Journal of urology 03/2013; 190(3). DOI:10.1016/j.juro.2013.03.030 · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation and timely cell death are important elements in host defence and healing processes. Keratinocytes express high levels of Toll-like receptor 3 (TLR3), and stimulation of the receptor with its ligand polyinosinic-polycytidylic acid (polyI:C) is a powerful signal for release of a variety of proinflammatory cytokines. Caspase-4 is required for maturation of pro-IL-1β through activation of caspase-1 in keratinocytes. TLR3 in keratinocytes was stimulated with polyI:C. Induction of messenger RNA of pro-IL-1β and inflammasomal components was measured using quantitative polymerase chain reaction methodology. Protein expression of IL-1β was analysed with ELISA and Western blot techniques. Activation of apoptotic caspases was measured with flow cytometry, and cytotoxicity was determined. TLR3 induced release of substantial amounts of pro-IL-1β in keratinocytes. NLRP3 or ASC dependent processing of IL-1β into its cleaved bioactive form was found to be minimal. The release of IL-1β was due to polyI:C induced cell death that occurred through a caspase-4 dependent manner. Caspase-1 did not seem to be involved in the polyI:C induced cytotoxicity despite that TLR3 stimulation induced activation of caspase-1. In addition, the apoptotic caspases -8, -9 and -3/7 were activated by polyI:C. TLR3 stimulation in keratinocytes induces a caspase-4 dependent release of pro-IL-1β, but further processing to active IL-1β is limited. Furthermore, TLR3 stimulation results in pyroptotic- and apoptotic cell death.
    Journal of dermatological science 06/2013; 72(1). DOI:10.1016/j.jdermsci.2013.05.006 · 3.42 Impact Factor
Show more