Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China.
Autophagy (Impact Factor: 11.42). 07/2011; 7(7):748-59. DOI: 10.4161/auto.7.7.15822
Source: PubMed

ABSTRACT Mutations in the gene encoding hepatocystin/80K-H (PRKCSH) cause autosomal-dominant polycystic liver disease (ADPLD). Hepatocystin functions in the processing of nascent glycoproteins as the noncatalytic beta subunit of glucosidase II (Glu II) and regulates calcium release from endoplasmic reticulum (ER) through the inositol 1,4,5-trisphosphate receptor (IP3R). Little is known, however, on how cells respond to a deficiency of hepatocystin. In this study, we demonstrate that knockdown of hepatocystin induces autophagy, the major intracellular degradation pathway essential for cellular health. Ectopic expression of wild-type hepatocystin, but not pathogenic mutants, rescues the siRNA-induced effect. Our data indicate that the induction of autophagy by hepatocystin deficiency is mediated through mammalian target of rapamycin (mTOR). Despite the resulting severe reduction in Glu II activity, the unfolded protein response (UPR) pathway is not disturbed. Furthermore, the inhibition of IP3R-mediated transient calcium flux is not required for the induction of autophagy. These results provide new insights into the function of hepatocysin and the regulation of autophagy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic livers are found in autosomal dominant polycystic kidney disease (ADPKD), caused by polycystic kidney disease (PKD)1 and PKD2 mutations in virtually all cases, and in isolated polycystic liver disease (PCLD), where 20% of cases are caused by mutations in Protein kinase C substrate 80K-H (PRKCSH) or SEC63. Loss of heterozygosity in single hepatoblasts leads to underlying cystogenic ductal plate malformations. Crucially, actual components driving this development remain elusive. Recent advances have unraveled the roles of transforming growth factor (TGF)-β, Notch and Wnt signaling, transcriptional regulators such as hepatocyte nuclear factor (HNF)6 and HNF1β, as well as cilium function in hepatobiliary organogenesis. In polycystic liver disease, mutation or defective co-translational processing of key elements required for primary cilium formation have been implicated. This review recapitulates liver patterning factors in hepatobiliary development and extracts molecular players in hepatic cystogenesis.
    Trends in Molecular Medicine 02/2014; DOI:10.1016/j.molmed.2014.01.003 · 10.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy has attracted a lot of attention in recent years. More and more proteins and signaling pathways have been discovered that somehow feed into the autophagy regulatory pathways. Regulation of autophagy is complex and condition-specific, and in several diseases, autophagic fluxes are changed. Here, we review the most well-established concepts in this field as well as the reported signaling pathways or components which steer the autophagy machinery. Furthermore, we will highlight how autophagic fluxes are changed in various diseases either as cause for or as response to deal with an altered cellular homeostasis and how modulation of autophagy might be used as potential therapy for such diseases.
    International journal of biological sciences 12/2013; 9(10):1121-1133. DOI:10.7150/ijbs.6666 · 4.37 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-glycosylation in the endoplasmic reticulum (ER) consists of the transfer of a preassembled glycan conserved among species (Glc3Man9GlcNAc2) from a lipid donor to a consensus sequence within a nascent protein that is entering the ER. The protein-linked glycans are then processed by glycosidases and glycosyltransferases in the ER producing specific structures that serve as signalling molecules for the fate of the folding glycoprotein: to stay in the ER during the folding process, to be retrotranslocated to the cytosol for proteasomal degradation if irreversibly misfolded, or to pursue transit through the secretory pathway as a mature glycoprotein. In the ER, each glycan signalling structure is recognized by a specific lectin. A domain similar to that of the mannose 6-phosphate receptors (MPRs) has been identified in several proteins of the secretory pathway. These include the beta subunit of glucosidase II (GII), a key enzyme in the early processing of the transferred glycan that removes middle and innermost glucoses and is involved in quality control of glycoprotein folding in the ER (QC), the lectins OS-9 and XTP3-B, proteins involved in the delivery of ER misfolded proteins to degradation (ERAD), the gamma subunit of the Golgi GlcNAc-1-phosphotransferase, an enzyme involved in generating the mannose 6-phosphate (M6P) signal for sorting acidic hydrolases to lysosomes, and finally the MPRs that deliver those hydrolytic enzymes to the lysosome. Each of the MRH-containing proteins recognizes a different signalling N-glycan structure. Three-dimensional structures of some of the MRH domains have been solved, providing the basis to understand recognition mechanisms.
    Current Protein and Peptide Science 01/2015; 16(1):31-48. · 2.33 Impact Factor


Available from
May 19, 2014