Article

Deficiency of hepatocystin induces autophagy through an mTOR-dependent pathway.

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China.
Autophagy (Impact Factor: 12.04). 07/2011; 7(7):748-59. DOI: 10.4161/auto.7.7.15822
Source: PubMed

ABSTRACT Mutations in the gene encoding hepatocystin/80K-H (PRKCSH) cause autosomal-dominant polycystic liver disease (ADPLD). Hepatocystin functions in the processing of nascent glycoproteins as the noncatalytic beta subunit of glucosidase II (Glu II) and regulates calcium release from endoplasmic reticulum (ER) through the inositol 1,4,5-trisphosphate receptor (IP3R). Little is known, however, on how cells respond to a deficiency of hepatocystin. In this study, we demonstrate that knockdown of hepatocystin induces autophagy, the major intracellular degradation pathway essential for cellular health. Ectopic expression of wild-type hepatocystin, but not pathogenic mutants, rescues the siRNA-induced effect. Our data indicate that the induction of autophagy by hepatocystin deficiency is mediated through mammalian target of rapamycin (mTOR). Despite the resulting severe reduction in Glu II activity, the unfolded protein response (UPR) pathway is not disturbed. Furthermore, the inhibition of IP3R-mediated transient calcium flux is not required for the induction of autophagy. These results provide new insights into the function of hepatocysin and the regulation of autophagy.

0 Bookmarks
 · 
130 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic livers are found in autosomal dominant polycystic kidney disease (ADPKD), caused by polycystic kidney disease (PKD)1 and PKD2 mutations in virtually all cases, and in isolated polycystic liver disease (PCLD), where 20% of cases are caused by mutations in Protein kinase C substrate 80K-H (PRKCSH) or SEC63. Loss of heterozygosity in single hepatoblasts leads to underlying cystogenic ductal plate malformations. Crucially, actual components driving this development remain elusive. Recent advances have unraveled the roles of transforming growth factor (TGF)-β, Notch and Wnt signaling, transcriptional regulators such as hepatocyte nuclear factor (HNF)6 and HNF1β, as well as cilium function in hepatobiliary organogenesis. In polycystic liver disease, mutation or defective co-translational processing of key elements required for primary cilium formation have been implicated. This review recapitulates liver patterning factors in hepatobiliary development and extracts molecular players in hepatic cystogenesis.
    Trends in Molecular Medicine 02/2014; · 9.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy has attracted a lot of attention in recent years. More and more proteins and signaling pathways have been discovered that somehow feed into the autophagy regulatory pathways. Regulation of autophagy is complex and condition-specific, and in several diseases, autophagic fluxes are changed. Here, we review the most well-established concepts in this field as well as the reported signaling pathways or components which steer the autophagy machinery. Furthermore, we will highlight how autophagic fluxes are changed in various diseases either as cause for or as response to deal with an altered cellular homeostasis and how modulation of autophagy might be used as potential therapy for such diseases.
    International journal of biological sciences 01/2013; 9(10):1121-1133. · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Podocytes are highly differentiated glomerular epithelial cells that contribute to the glomerular barrier function of kidney. A role for autophagy has been proposed in maintenance of their cellular integrity, but the mechanisms controlling autophagy in podocytes are not clear. The present study tested whether CD38-mediated regulation of lysosome function contributes to autophagic flux or autophagy maturation in podocytes. Podocytes were found to exhibit a high constitutive level of LC3-II, a robust marker of autophagosomes (APs), suggesting a high basal level of autophagic activity. Treatment with the mTOR inhibitor, rapamycin, increased LC3-II and the content of both APs detected by Cyto-ID Green staining and autophagolysosomes (APLs) measured by acridine orange staining and colocalization of LC3 and Lamp1. Lysosome function inhibitor bafilomycin A1 increased APs, but decreased APLs content under both basal and rapamycin-induced conditions. Inhibition of CD38 activity by nicotinamide or silencing of CD38 gene produced the similar effects to that bafilomycin A1 did in podocytes. To explore the possibility that CD38 may control podocyte autophagy through its regulation of lysosome function, the fusion of APs with lysosomes in living podocytes was observed by co-transfection of GFP-LC3B and RFP-Lamp1 expression vectors. A colocalization of GFP-LC3B and RFP-Lamp1 upon stimulation of rapamycin became obvious in transfected podocytes, which could be substantially blocked by nicotinamide, CD38 shRNA, and bafilomycin. Moreover, blockade of the CD38-mediated regulation by PPADS completely abolished rapamycin-induced fusion of APs with lysosomes. These results indicate that CD38 importantly control lysosomal function and influence autophagy at the maturation step in podocytes.
    Journal of Cellular and Molecular Medicine 11/2013; · 4.75 Impact Factor

Full-text

View
48 Downloads
Available from
May 19, 2014