Article

In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprofen methyl ester.

RIKEN Center for Molecular Imaging Science, Hyogo, Japan.
Journal of Nuclear Medicine (Impact Factor: 5.77). 06/2011; 52(7):1094-101. DOI: 10.2967/jnumed.110.084046
Source: PubMed

ABSTRACT Cyclooxygenase (COX)-1 and -2 are prostanoid-synthesizing enzymes that play important roles in the regulation of neuroinflammation and in the development of neurodegenerative disorders. However, the specific functions of these isoforms are still unclear. We recently developed (11)C-labeled ketoprofen methyl ester as a PET probe that targets the COXs for imaging neuroinflammation, though its responsible isoform is yet to be determined. In the present study, we performed ex vivo and in vivo imaging studies with (11)C-ketoprofen methyl ester and determined the contributions of the COX isoforms during the neuroinflammatory process.
To identify the COX isoform responsible for (11)C-ketoprofen methyl ester in the brain, we examined the ex vivo autoradiography of (11)C-ketoprofen methyl ester using COX-deficient mice. Time-dependent changes in accumulation of (11)C-ketoprofen methyl ester during the neuroinflammatory process were evaluated by PET in rats with hemispheric neuroinflammation induced by intrastriatal injection of lipopolysaccharide or quinolinic acid. In both rat models, cell-type specificity of COX isoform expression during neuroinflammation was identified immunohistochemically.
Ex vivo autoradiographic analysis of COX-deficient mice revealed a significant reduction of (11)C-ketoprofen methyl ester accumulation only in COX-1-deficient mice, not COX-2-deficient mice. PET of rats after intrastriatal injection of lipopolysaccharide showed a significant increase in accumulation of (11)C-ketoprofen methyl ester in the inflamed area. This increase was evident at the early phase of 6 h, peaked at day 1, and then returned to basal levels by day 7. In addition, immunohistochemical analysis revealed that the population of activated microglia and macrophages was elevated at the early phase with COX-1 expression but not COX-2. A significant increase in (11)C-ketoprofen methyl ester accumulation was also observed at day 1 after intrastriatal injection of quinolinic acid, with increased COX-1-expressing activated microglia and macrophages.
We have identified (11)C-ketoprofen methyl ester as a COX-1-selective PET probe, and using this, we have also demonstrated a time-dependent expression of COX-1 in activated microglia and macrophages during the neuroinflammatory process in the living brain. Thus, COX-1 may play a crucial role in the pathology of neuroinflammation and might be a critical target for the diagnosis and therapy of neurodegenerative disorders.

0 Bookmarks
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nucleosides zidovudine (AZT), stavudine (d4T), and telbivudine (LdT) are approved for use in the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) infections. To promote positron emission tomography (PET) imaging studies on their pharmacokinetics, pharmacodynamics, and applications in cancer diagnosis, a convenient one-pot method for Pd(0)-Cu(I) co-mediated rapid C-C coupling of [(11) C]methyl iodide with stannyl precursor was successfully established and applied to synthesize the PET tracers [(11) C]zidovudine, [(11) C]stavudine, and [(11) C]telbivudine. After HPLC purification and radiopharmaceutical formulation, the desired PET tracers were obtained with high radioactivity (6.4-7.0 GBq) and specific radioactivity (74-147 GBq/µmol) and with high chemical (>99%) and radiochemical (>99.5%) purities. This one-pot Pd(0)-Cu(I) co-mediated rapid C-[(11) C]methylation also worked well for syntheses of [methyl-(11) C]thymidine and [methyl-(11) C]4'-thiothymidine, resulting twice the radioactivity of those prepared by a previous two-pot method. The mechanism of one-pot Pd(0)-Cu(I) co-mediated rapid C-[(11) C]methylation was also discussed.
    Journal of Labelled Compounds and Radiopharmaceuticals 07/2014; · 1.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus can be applied to detect and monitor different aspects of diseases. The number of applications of PET imaging in multiple sclerosis is still limited. Clinical studies using PET are basically focused on monitoring changes in glucose metabolism and the presence of activated microglia/macrophages in sclerotic lesions. In preclinical studies, PET imaging of targets for other processes, like demyelination and remyelination, has been investigated and may soon be translated to clinical applications. Moreover, more PET tracers that could be relevant for MS are available now, but have not been studied in this context yet. In this review, we summarize the PET imaging studies performed in multiple sclerosis up to now. In addition, we will identify potential applications of PET imaging of processes or targets that are of interest to MS research, but have yet remained largely unexplored.
    Journal of Neuroimmune Pharmacology 05/2014; · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Neuroinflammatory processes play an important role in the pathogenesis of Alzheimer’s disease and other brain disorders, and nonsteroidal anti-inflammatory drugs (NSAIDs) are considered therapeutic candidates. As a biomarker of neuroinflammatory processes, 11C-labeled ketoprofen methyl ester ([11C]KTP-Me) was designed to allow cerebral penetration of ketoprofen (KTP), an active form of a selective cyclooxygenase-1 inhibitor that acts as an NSAID. Rat neuroinflammation models indicate that [11C]KTP-Me enters the brain and is retained in inflammatory lesions, accumulating in activated microglia. [11C]KTP-Me is washed out from normal tissues, leading to the present first-in-human exploratory study. Methods 11C]KTP-Me was synthesized by rapid C-[11C]methylation of [11C]CH3I and the corresponding arylacetate precursor, purified with high-performance liquid chromatography, and prepared as an injectable solution including PEG400, providing radiochemical purity of > 99% and specific activity of > 25 GBq/??mol at injection. Six young healthy male humans were injected with [11C]KTP-Me and scanned with PET camera to determine the early-phase brain time course followed by three whole-body scans starting 8, 20, and 40 min post-injection, together with sequential blood sampling and labeled metabolite analysis. Results No adverse effects were observed during PET scanning after [11C]KTP-Me injection. [11C]KTP-Me was rapidly metabolized to 11C-labeled ketoprofen ([11C]KTP) within 2-3 min and was gradually cleared from blood. The radioactivity entered the brain with an average peak cortical SUV of 1.5 at 2 min. The cortical activity was gradually washed out. Whole-body images indicated that the urinary bladder was the major excretory pathway. The organ with the highest radiation dose was the urinary bladder (average dose of 41??Gy/MBq, respectively). The mean effective dose was 4.7 ??Sv/MBq, which was comparable to other 11C-labeled radiopharmaceuticals. Conclusion 11C]KTP-Me demonstrated a favorable dosimetry, biodistribution, and safety profile. [11C]KTP-Me entered the human brain and the radioactivity was washed out from cerebral tissue. These data warrant further exploratory studies on patients with neuroinflammation.
    Nuclear Medicine and Biology. 01/2014;

Full-text

Download
15 Downloads
Available from
May 22, 2014