Article

Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT) in DNA repair, apoptosis and necrosis after cisplatin

Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA.
Molecular Cancer (Impact Factor: 5.4). 06/2011; 10:74. DOI: 10.1186/1476-4598-10-74
Source: PubMed

ABSTRACT Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK) binds to DNA double strand breaks (DSBs) through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity.
Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs) increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1), Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT). The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis.
DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and necrosis. Targeting DNA repair in cancer patients may have different therapeutic effects depending upon the roles played by factors targeted.

0 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Poly (ADP) ribose polymerase (PARP) plays a key role in DNA repair and is highly expressed in small cell lung cancer (SCLC). We investigated the therapeutic impact of PARP inhibition in SCLC. In vitro cytotoxicity of veliparib, cisplatin, carboplatin, and etoposide singly and combined was determined by MTS in 9 SCLC cell lines (H69, H128, H146, H526, H187, H209, DMS53, DMS153, and DMS114). Subcutaneous xenografts in athymic nu/nu mice of H146 and H128 cells with relatively high and low platinum sensitivity, respectively, were employed for in vivo testing. Mechanisms of differential sensitivity of SCLC cell lines to PARP inhibition were investigated by comparing protein and gene expression profiles of the platinum sensitive and the less sensitive cell lines. Veliparib showed limited single-agent cytotoxicity but selectively potentiated (≥50% reduction in IC50) cisplatin, carboplatin, and etoposide in vitro in five of nine SCLC cell lines. Veliparib with cisplatin or etoposide or with both cisplatin and etoposide showed greater delay in tumor growth than chemotherapy alone in H146 but not H128 xenografts. The potentiating effect of veliparib was associated with in vitro cell line sensitivity to cisplatin (CC = 0.672; P = 0.048) and DNA-PKcs protein modulation. Gene expression profiling identified differential expression of a 5-gene panel (GLS, UBEC2, HACL1, MSI2, and LOC100129585) in cell lines with relatively greater sensitivity to platinum and veliparib combination. Veliparib potentiates standard cytotoxic agents against SCLC in a cell-specific manner. This potentiation correlates with platinum sensitivity, DNA-PKcs expression and a 5-gene expression profile.
    Cancer Medicine 12/2014; 3(6). DOI:10.1002/cam4.317
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of alkenyl-substituted titanocene compounds have been supported on the mesoporous silica-based material KIT-6. The corresponding functionalised materials were completely characterised by different techniques (solid-state multinuclear NMR spectroscopy, IR spectroscopy, N2 adsorption–desorption isotherms, X-ray fluorescence and diffraction, SEM and TEM) to observe the incorporation of the titanocene derivatives on the external surface of the material KIT-6. Both the titanocene compounds and the materials were tested in vitro against a wide variety of human cancer and normal cell lines. A very high cytotoxicity of the synthesised titanocene derivatives (IC50 values in the range of those described in the literature for the most active cytotoxic titanocene compounds), with selectivity towards cancer cell lines was observed. The cytotoxic activity of the materials is the highest reported to date for titanocene-functionalised materials. In addition, higher Ti uptake (from 4 to 23 % of the initial amount of Ti) of the cells treated with materials was observed with respect to those treated with “free” titanocene derivatives (which gave Ti uptake values from 0.4 to 4.6 % of the initial amount of Ti). Additional experiments with the titanocene derivatives and the functionalised materials revealed that changes to the morphological and functional dynamics of apoptosis occurred when the active titanocene species were incorporated into mesoporous materials. In addition, the materials could induce programmed cell death in tumour cell populations by impairing the damaged DNA repair mechanisms and by upregulation of intrinsic and extrinsic apoptotic signalling pathways.
    Chemistry - A European Journal 08/2014; 20(34). DOI:10.1002/chem.201400300 · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The LEM proteins comprise a heterogeneous family of chromatin-associated proteins that share the LEM domain, a structural motif mediating interaction with the DNA associated protein, Barrier-to-Autointegration Factor (BAF). Most of the LEM proteins are integral proteins of the inner nuclear membrane and associate with the nuclear lamina, a structural scaffold of lamin intermediate filament proteins at the nuclear periphery, which is involved in nuclear mechanical functions and (hetero-)chromatin organization. A few LEM proteins, such as Lamina-associated polypeptide (LAP)2α and Ankyrin and LEM domain-containing protein (Ankle)1 lack transmembrane domains and localize throughout the nucleoplasm and cytoplasm, respectively. LAP2α has been reported to regulate cell proliferation by affecting the activity of retinoblastoma protein in tissue progenitor cells and numerous studies showed upregulation of LAP2α in cancer. Ankle1 is a nuclease likely involved in DNA damage repair pathways and single nucleotide polymorphisms in the Ankle1 gene have been linked to increased breast and ovarian cancer risk. In this review we describe potential mechanisms of the involvement of LEM proteins, particularly of LAP2α and Ankle1 in tumorigenesis and we provide evidence that LAP2α expression may be a valuable diagnostic and prognostic marker for tumor analyses.
    Advances in Experimental Medicine and Biology 01/2014; 773:143-63. DOI:10.1007/978-1-4899-8032-8_7 · 2.01 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from