Article

Orthopaedic implant technology: biomaterials from past to future.

Department of Orthopaedic Surgery, National University Health System, Singapore.
Annals of the Academy of Medicine, Singapore (Impact Factor: 1.36). 05/2011; 40(5):237-44.
Source: PubMed

ABSTRACT Orthopaedic implant technology is heavily based on the development and use of biomaterials. These are non-living materials (e.g. metals, polymers and ceramics) that are introduced into the human body as constituents of implants that fulfill or replace some important function. Examples would be prosthetic joint replacements and fracture fixation implants. For orthopaedic biomaterials to succeed in their desired functions and outcomes in the body, a number of factors need to be considered. The most obvious mechanical properties of the implants are that they need to suit their intended function, and various classes and types of biomaterials have been developed and characterised for use in different implant components depending on their demands. Less well understood but no less important are the interactions that occur between the constituent biomaterials and the living cells and tissues, both of the human host as well as pathogens such as bacteria. Biomaterials used for orthopaedic applications are generally considered to be biocompatible. However, adverse effects arising from interactions at the implant interface can result in various modes of implant failure, such as aseptic loosening and implant infection. This review paper uses the illustrative example of total hip replacement (which has been called the operation of the century) to highlight key points in the evolution of orthopaedic biomaterials. It will also examine research strategies that seek to address some of the major problems that orthopaedic implant surgery are facing today.

1 Bookmark
 · 
196 Views
  • Source
    Chemical Reviews 04/2014; · 41.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several bone implants are applied in clinical practice, but none meets the requirements of an ideal implant. Platelet-rich plasma (PRP) is an easy and inexpensive way to obtain growth factors in physiologic proportions that might favour the regenerative process. The aim of this review is to analyse clinical studies in order to investigate the role of PRP in favouring bone integration of graft, graft substitutes, or implants, and to identify the materials for which the additional use of PRP might be associated with superior osseo- and soft tissues integration. A search on PubMed database was performed considering the literature from 2000 to 2012, using the following string: ("Bone Substitutes"[Mesh] OR "Bone Transplantation"[Mesh] OR "Bone Regeneration"[Mesh] OR "Osseointegration"[Mesh]) AND ("Blood Platelets"[Mesh] OR "Platelet-Rich Plasma"[Mesh]). After abstracts screening, the full-texts of selected papers were analyzed and the papers found from the reference lists were also considered. The search focused on clinical applications documented in studies in the English language: levels of evidence included in the literature analysis were I, II and III. Literature analysis showed 83 papers that fulfilled the inclusion criteria: 26 randomized controlled trials (RCT), 14 comparative studies, 29 case series, and 14 case reports. Several implant materials were identified: 24 papers on autologous bone, 6 on freeze-dried bone allograft (FDBA), 16 on bovine porous bone mineral (BPBM), 9 on beta-tricalcium phosphate (beta-TCP), 4 on hydroxyapatite (HA), 2 on titanium (Ti), 1 on natural coral, 1 on collagen sponge, 1 on medical-grade calcium sulphate hemihydrate (MGCSH), 1 on bioactive glass (BG) and 18 on a combination of biomaterials. Only 4 papers were related to the orthopaedic field, whereas the majority belonged to clinical applications in oral/maxillofacial surgery. The systematic research showed a growing interest in this approach for bone implant integration, with an increasing number of studies published over time. However, knowledge on this topic is still preliminary, with the presence mainly of low quality studies. Many aspects still have to be understood, such as the biomaterials that can benefit most from PRP and the best protocol for PRP both for production and application.
    BMC Musculoskeletal Disorders 11/2013; 14(1):330. · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.
    Journal of the Korean Association of Oral and Maxillofacial Surgeons. 04/2013; 39(2):43-54.

Full-text

Download
3 Downloads
Available from