Cutting Edge: Reactive Oxygen Species Inhibitors Block Priming, but Not Activation, of the NLRP3 Inflammasome

Unit for Clinical Biochemistry, Institute for Clinical Chemistry and Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany.
The Journal of Immunology (Impact Factor: 5.36). 06/2011; 187(2):613-7. DOI: 10.4049/jimmunol.1100613
Source: PubMed

ABSTRACT A common denominator among the multiple damage-inducing agents that ultimately lead to activation of NLRP3 has not yet been identified. Recently, production of reactive oxygen species (ROS) has been suggested to act as a common event upstream of the NLRP3 inflammasome machinery. Because de novo translation of NLRP3 is an essential step in the activation of NLRP3, we investigated the role of substances that inhibit either ROS production or its oxidative activity. Although we observe that NLRP3 inflammasome activation is unique among other known inflammasomes in its sensitivity to ROS inhibition, we have found that this phenomenon is attributable to the fact that NLRP3 strictly requires priming by a proinflammatory signal, a step that is blocked by ROS inhibitors. Although these data do not exclude a general role for ROS production in the process of NLRP3-triggered inflammation, they would put ROS upstream of NLRP3 induction, but not activation.

Download full-text


Available from: Eva Bartok, Jun 27, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of macrophages by bacterial pathogens can trigger Toll-like receptor (TLR) activation as well as Nod-like receptors (NLRs) leading to inflammasome formation and cell death dependent on caspase-1 (pyroptosis). Complicating the study of inflammasome activation is priming. Here, we develop a priming-free NLRC4 inflammasome activation system to address the necessity and role of priming in pyroptotic cell death and damage-associated molecular pattern (DAMP) release. We find pyroptosis is not dependent on priming and when priming is re-introduced pyroptosis is unaffected. Cells undergoing unprimed pyroptosis appear to be independent of mitochondrial involvement and do not produce inflammatory cytokines, nitrous oxide (NO), or reactive oxygen species (ROS). Nevertheless, they undergo an explosive cell death releasing a chemotactic isoform of the DAMP high mobility group protein box 1 (HMGB1). Importantly, priming through surface TLRs but not endosomal TLRs during pyroptosis leads to the release of a new TLR4-agonist cysteine redox isoform of HMGB1. These results show that pyroptosis is dominant to priming signals and indicates that metabolic changes triggered by priming can affect how cell death is perceived by the immune system.
    The EMBO Journal 12/2012; DOI:10.1038/emboj.2012.328 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The role of the Nlrp3 inflammasome in nonallergic airway hyperresponsiveness (AHR) has not previously been reported. Recent evidence supports both interleukin (IL) 1β and short fragments of hyaluronan (HA) as contributors to the biological response to inhaled ozone. Objective: Because extracellular secretion of IL-1β requires activation of the inflammasome, we investigated the role of the inflammasome proteins ASC, caspase1, and Nlrp3 in the biological response to ozone and HA. Methods: C57BL/6J wild-type mice and mice deficient in ASC, caspase1, or Nlrp3 were exposed to ozone (1 ppm for 3 hr) or HA followed by analysis of airway resistance, cellular inflammation, and total protein and cytokines in bronchoalveolar lavage fluid (BALF). Transcription levels of IL-1β and IL-18 were determined in two populations of lung macrophages. In addition, we examined levels of cleaved caspase1 and cleaved IL-1β as markers of inflammasome activation in isolated alveolar macrophages harvested from BALF from HA-treated mice. Results: We observed that genes of the Nlrp3 inflammasome were required for development of AHR following exposure to either ozone or HA fragments. These genes are partially required for the cellular inflammatory response to ozone. The expression of IL-1β mRNA in alveolar macrophages was up-regulated after either ozone or HA challenge and was not dependent on the Nlrp3 inflammasome. However, soluble levels of IL-1β protein were dependent on the inflammasome after challenge with either ozone or HA. HA challenge resulted in cleavage of macrophage-derived caspase1 and IL-1β, suggesting a role for alveolar macrophages in Nlrp3-dependent AHR. Conclusions: The Nlrp3 inflammasome is required for the development of ozone-induced reactive airways disease.
    Environmental Health Perspectives 09/2012; 120(12). DOI:10.1289/ehp.1205188 · 7.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammasomes are a set of intracellular protein complexes that enable autocatalytic activation of inflammatory caspases, which drive host and immune responses by releasing cytokines and alarmins into circulation and by inducing pyroptosis, a proinflammatory cell death mode. The inflammasome type mediating these responses varies with the microbial pathogen or stress factor that poses a threat to the organism. Since the discovery that polymorphisms in inflammasome genes are linked to common autoimmune diseases and less frequent periodic fever syndromes, inflammasome signaling has been dissected at the molecular level. In this review, we present recently gained insight on the distinct inflammasome types, their activation and effector mechanisms, and their modulation by microbial virulence factors. In addition, we discuss recently gained knowledge on the role of deregulated inflammasome activity in human autoinflammatory, autoimmune, and infectious diseases.
    Annual Review of Cell and Developmental Biology 09/2012; 28:137-61. DOI:10.1146/annurev-cellbio-101011-155745 · 20.24 Impact Factor