Tooth slice/scaffold model of dental pulp tissue engineering.

Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, 48109-1078, USA.
Advances in dental research 07/2011; 23(3):325-32. DOI: 10.1177/0022034511405325
Source: PubMed

ABSTRACT Multipotency is a defining characteristic of post-natal stem cells. The human dental pulp contains a small subpopulation of stem cells that exhibit multipotency, as demonstrated by their ability to differentiate into odontoblasts, neural cells, and vascular endothelial cells. These discoveries highlight the fundamental role of stem cells in the biology of the dental pulp and suggest that these cells are uniquely suited for dental pulp tissue-engineering purposes. The availability of experimental approaches specifically designed for studies of the differentiation potential of dental pulp stem cells has played an important role in these discoveries. The objective of this review is to describe the development and characterization of the Tooth Slice/Scaffold Model of Dental Pulp Tissue Engineering. In addition, we discuss the multipotency of dental pulp stem cells, focusing on the differentiation of these cells into functional odontoblasts and into vascular endothelial cells.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA) cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs), yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. Methods The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. Results A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. Conclusions This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date.
    Journal of Endodontics 10/2014; DOI:10.1016/j.joen.2014.07.001 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stemming from in vitro and in vivo pre-clinical and human models, tissue-engineering-based strategies continue to demonstrate great potential for the regeneration of the pulp-dentin complex, particularly in necrotic, immature permanent teeth. Nanofibrous scaffolds, which closely resemble the native extracellular matrix, have been successfully synthesized by various techniques, including but not limited to electrospinning. A common goal in scaffold synthesis has been the notion of promoting cell guidance through the careful design and use of a collection of biochemical and physical cues capable of governing and stimulating specific events at the cellular and tissue levels. The latest advances in processing technologies allow for the fabrication of scaffolds where selected bioactive molecules can be delivered locally, thus increasing the possibilities for clinical success. Though electrospun scaffolds have not yet been tested in vivo in either human or animal pulpless models in immature permanent teeth, recent studies have highlighted their regenerative potential both from an in vitro and in vivo (i.e., subcutaneous model) standpoint. Possible applications for these bioactive scaffolds continue to evolve, with significant prospects related to the regeneration of both dentin and pulp tissue and, more recently, to root canal disinfection. Nonetheless, no single implantable scaffold can consistently guide the coordinated growth and development of the multiple tissue types involved in the functional regeneration of the pulp-dentin complex. The purpose of this review is to provide a comprehensive perspective on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics. The authors focused this review on bioactive nanofibrous scaffolds, injectable scaffolds and stem cells, and pre-clinical findings using stem-cell-based strategies. These topics are discussed in detail in an attempt to provide future direction and to shed light on their potential translation to clinical settings.
    Journal of Dental Research 09/2014; 93(12). DOI:10.1177/0022034514549809 · 4.14 Impact Factor