Impacts of two perfluorinated compounds (PFOS and PFOA) on human hepatoma cells: cytotoxicity but no genotoxicity?

DESP, Nancy Université - Faculté de Médecine de Nancy, 9 Avenue de la forêt de Haye BP 184, 54 505 Vandœuvre-lès-Nancy cedex, France.
International journal of hygiene and environmental health (Impact Factor: 2.64). 06/2011; 214(6):493-9. DOI: 10.1016/j.ijheh.2011.05.010
Source: PubMed

ABSTRACT Perfluorinated compounds (PFCs) and particularly two of them, perfluoroctanoate (PFOA) and perfluorooctanesulfonate (PFOS), have been widely produced and used since 1950. They both persist in the environment and accumulate in wildlife and humans. The toxicity of PFOS and PFOA has been studied extensively in rodents with several adverse effects mainly a hepatocarcinogenic potential. Carcinogenic effects are not highlighted in humans' studies. In this study, we investigated the cytotoxic and genotoxic effects of PFOA and PFOS using human HepG2 cells after 1 or 24h of exposure. The cytotoxic and genotoxic potential was evaluated by MTT assay, single cell gel electrophoresis (SCGE) assay and micronucleus assay respectively. We measured the intracellular generation of reactive oxygen species (ROS) using dichlorofluorescein diacetate to identify a potential mechanism of toxicity. We observed a cytotoxic effect of PFOA and PFOS after 24h of exposure starting from a concentration of 200 μM (MTT: -14.6%) and 300 μM (MTT: -51.2%) respectively. We did not observe an increase of DNA damage with the comet assay or micronucleus with the micronucleus assay after exposure to the two PFCs. After 24h of exposure, both PFOA and PFOS highlight a decrease of ROS generation (-5.9% to -23%). We did not find an effect after an hour of exposure. Our findings show that PFOA and PFOS exert a cytotoxic effect on the human cells line HepG2 but nor PFOA or PFOS could induce an increase of DNA damage (DNA strand breaks and micronucleus) or reactive oxygen species at the range concentration tested. Our results do not support that oxidative stress and DNA damage are relevant for potential adverse effects of PFOA and PFOS. These results tend to support epidemiological studies that do not show evidence of carcinogenicity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Perfluorinated compounds (PFCs) are persistent organic contaminants detected in various environmental matrices including sediment, air, biota, and water. The objectives of this study was to evaluate the occurrence of these contaminants within the surface waters of the Pacific Northwest region and through relative concentrations and ratios, to assess their possible sources. Surface waters were extracted and analyzed by liquid chromatography tandem mass spectrometry (LCMSMS). Perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were the most commonly detected PFCs. Total PFC concentrations detected ranged from 1.5 to 41ng L-1. Surprisingly, levels of PFCs in the more urbanized Puget Sound waters were comparable to those measured from the more rural region of Clayoquot and Barkley Sounds in British Columbia. The ratio of PFHpA/PFOA were also similar between the two regions, suggesting that the burden of PFCs throughout the region results from direct input from regional sources.
    Marine pollution bulletin 11/2013; · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concerns regarding perfluorinated chemicals (PFCs) have grown significantly in recent years. However, regulations and guidelines regarding the emission and treatment of PFCs are still missing in most parts of the world, mostly due to the lack of PFC toxicity data. In the current study, the genotoxic effects of four common PFCs, named perfluorooctanesulfonate (PFOS), perfluoroocanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were investigated on marine mussels. The effects of exposure time and concentration on the toxic behavior of the compounds were also examined. Genotoxicity of PFCs was assessed in biomarker assays, showing that exposure to the target compounds could damage the organism's genetic material to varying extents, including DNA strand breaks and fragmentation, chromosomal breaks and apoptosis. The adverse effects increased with both exposure concentration and time and were related with the organism burden of PFCs. The integrated biomarker response analysis demonstrated that PFOS exhibited a higher genotoxicity than the other tested compounds. The EC50 values and confidence intervals based on integrative genotoxicity were 33 (29-37), 594 (341-1036), 195 (144-265) and 78 (73-84) μg/L for PFOS, PFOA, PFNA and PFDA respectively, classifying PFOS as a highly genotoxic compound. Although primary DNA damage was shown to be recoverable after exposure ceased, permanent genetic damage caused by elevated PFC concentrations was not restored. This is the first ecotoxicity study of PFCs that focuses on the genotoxic effects of the compounds, clearly indicating the genotoxicity of the tested PFCs and demonstrating that functional groups have a major impact on the compounds' genotoxic behavior.
    Science of The Total Environment 04/2014; 487C:117-122. · 3.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chlorinated phenols and perfluoroalkyl acids (PFAAs) are two kinds of pollutants which are widely present in the environment. Considering liver is the primary toxic target organ for these two groups of chemicals, it is interesting to evaluate the possible joint effects of them on liver. In this work, the combined toxicity of pentachlorophenol (PCP) and perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) were investigated using HepG2 cells. The results indicated that PFOS and PFOA could strengthen PCP's hepatotoxicity. Further studies showed that rather than intensify the oxidative stress or promote the biotransformation of PCP, PFOS (or PFOA) might lead to strengthening of the oxidative phosphorylation uncoupling of PCP. By measuring the intracellular PCP concentration and the cell membrane properties, it was suggested that PFOS and PFOA could disrupt the plasma membrane and increase the membrane permeability. Thus, more cellular accessibility of PCP was induced when they were co-exposed to PCP and PFOS (or PFOA), leading to increased cytotoxicity. Further research is warranted to better understand the combined toxicity of PFAAs and other environmental pollutants.
    Chemosphere 08/2013; · 3.14 Impact Factor