Article

The role of RhoC in the proliferation and apoptosis of hepatocellular carcinoma cells.

Department of General Surgery, First Hospital of Jilin University, 71 Xin Min St, Changchun, 130021 Jilin Province, China.
Medical Oncology (Impact Factor: 2.14). 06/2011; 29(3):1802-9. DOI: 10.1007/s12032-011-0003-0
Source: PubMed

ABSTRACT In this study, we examined the effects of RhoC expression on the growth and apoptosis of human hepatocellular carcinoma cells (HCCs) in vitro in order to gain more understanding of its potential as a therapeutic target gene. We knocked down the endogenous expression levels of RhoC in human HCCs, BEL-7402, using siRNA and ectopically expressed RhoC in untransformed hepatocytes, HL7702. Stable cell lines were established, and cell growth was examined by MTT and colony formation assays, cell proliferation examined by silver nitrate staining of AgNORs, and cell cycle distribution examined by flow cytometry. RT-PCR analysis was performed to determine the mRNA expression levels of RhoC and cell cycle-related genes. Finally, the effect of RhoC expression on apoptosis was also examined by flow cytometry, agarose gel electrophoresis of fragmented DNA, Wright staining, and RT-PCR analysis for genes regulating apoptosis. Compared to the parental and control siRNA (siCtrl)-transfected BEL-7402 cells, the siRhoC-transfected cells exhibited significantly reduced cell growth, cell proliferation, percentage of cells in the S-G2/M phase, and expression of Cyclin D1, CDK4, and Bcl2. Knockdown of RhoC expression in BEL-7402 cells also significantly increased the percentage of cells in the G0/G1 phase, cellular apoptosis, and expression of p21, p16, and Bax. Furthermore, ectopic expression of RhoC in HL7702 cells led to a significant increase in cell growth compared to parental or siCtrl-transfected cells. These data suggest that RhoC is a key regulator of cell growth and apoptosis in HCC cells, making it a potential target for gene therapy.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Ras homolog gene family member C (RhoC) is a small G protein/guanosine triphosphatase involved in tumor mobility, invasion, and metastasis. METHODS: After RhoC siRNA transfection, we measured the changes in phenotypes and some relevant molecules in ovarian carcinoma cell, OVCAR3. The mRNA and protein expression of RhoC was detected in ovarian tumors. RESULTS: RhoC siRNA transfection resulted in low growth, G1 arrest, and apoptotic induction in the OVCAR3 in comparison with the control and mock. Following RhoC knockdown, there was reduced mRNA or protein expression of protein kinase B (Akt), signal transducer and activator of transcription 3 (stat3), bcl-xL, surviving and phosphorylated p70 S6 kinase (p-p70s6k), while the converse was true for Bax and caspase-3. Lovastatin induced apoptosis, suppressed proliferation, migration and invasion, and disrupted lamellipodia formation in OVCAR3. Lovastatin exposure induced lower RhoC, bcl-2, matrix metalloproteinase-9 (MMP-9), survivin, Akt, bcl-xL, vascular endothelial growth factor (VEGF), and p-p70s6k expression in OVCAR3 compared to the control, but higher caspase-3 and Bax expression. RhoC mRNA and protein expression was significantly higher in ovarian carcinoma than in benign tumors and normal ovary tissue (p<0.05) and was positively associated with dedifferentiation, FIGO staging and p-p70s6k expression of ovarian carcinoma (p<0.05). CONCLUSIONS: The up-regulated RhoC expression may affect ovarian carcinogenesis and should be considered a good biomarker for the differentiation and progression of ovarian carcinoma. RhoC plays an important role in apoptosis by modulating the relevant genes and the phosphorylation of downstream p70s6k.
    Gynecologic Oncology 06/2013; · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial-mesenchymal transition (EMT) is a critical step in the metastasis of hepatocellular carcinoma (HCC). BTB/POZ domain-containing protein 7 (BTBD7) regulates EMT-associated proteins implicated in HCC progression. However, the role(s) of BTBD7 in HCC have not been identified. Using highly metastatic HCC HCCLM3 cells, immortalized L02 hepatocytes, metastatic HCC animal models and three independent cohorts of HCC patient specimens, we aimed to determine the involvement of BTBD7 in HCC metastasis. We show that BTBD7 mRNA and protein was highly expressed in HCC cells and tumor tissues, with such expression being associated with: enhanced cell motility, venous invasion, and poor prognosis. BTBD7 promoted HCC angiogenesis and metastasis in vitro and in vivo, but did not influence cell proliferation or colony formation. BTBD7 enhancement of HCC invasion and EMT phenotype occurred via activation of a RhoC-Rock2-FAK signaling pathway resulting in MMP-2/9 production and microvessel formation. Applying a predictive risk score model, Cox regression analysis revealed that high BTBD7 expression integrated with high microvessel density was a powerful independent predictive factor of HCC clinical outcome. Conclusion: The present study identifies BTBD7 as a novel candidate prognostic factor and a potential therapeutic target of HCC. (HEPATOLOGY 2013.).
    Hepatology 01/2013; · 12.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Several Rho GTPase-activating proteins (RhoGAPs) are implicated in tumor progression through their effects on Rho GTPase activity. ARHGAP21 is a RhoGAP with increased expression in head and neck squamous cell carcinoma and with a possible role in glioblastoma tumor progression, yet little is known about the function of ARHGAP21 in cancer cells. Here we studied the role of ARHGAP21 in two prostate adenocarcinoma cell lines, LNCaP and PC3, which respectively represent initial and advanced stages of prostate carcinogenesis. RESULTS: ARHGAP21 is located in the nucleus and cytoplasm of both cell lines and its depletion resulted in decreased proliferation and increased migration of PC3 cells but not LNCaP cells. In PC3 cells, ARHGAP21 presented GAP activity for RhoA and RhoC and induced changes in cell morphology. Moreover, its silencing altered the expression of genes involved in cell proliferation and cytoskeleton organization, as well as the endothelin-1 canonical pathway. CONCLUSIONS: Our results reveal new functions and signaling pathways regulated by ARHGAP21, and indicate that it could contribute to prostate cancer progression.
    Biochimica et Biophysica Acta 11/2012; · 4.66 Impact Factor