Changes in Thoracic Kyphosis Negatively Impact Sagittal Alignment After Lumbar Pedicle Subtraction Osteotomy

NYU Hospital for Joint Diseases, New York, NY, USA.
Spine (Impact Factor: 2.3). 06/2011; 37(3):E180-7. DOI: 10.1097/BRS.0b013e318225b926
Source: PubMed


Consecutive, multicenter retrospective review.
To evaluate if change in thoracic kyphosis (TK) has a positive or negative impact on spinopelvic alignment after lumbar pedicle subtraction osteotomy (PSO) with short fusions.
In the setting of sagittal malalignment, the effect of large vertebral resections can now be anticipated in long fusions, but their impact on unfused segments (reciprocal changes [RC]) remains poorly understood.
A total of 34 adult patients (mean age = 54 years; SD = 12) who underwent lumbar PSO with upper instrumented vertebra below T10 were included. Radiographic analysis included pre- and postassessment of TK, lumbar lordosis (LL), sagittal vertical axis (SVA), T1 spinopelvic inclination (T1SPI), pelvic tilt (PT), and pelvic incidence (PI). Final SVA and PT were analyzed to determine successful realignment. RC in the thoracic spine was designated favorable or unfavorable on the basis of impact on final SVA and PT.
Mean PSO resection was 26°. LL increased from 20° to 49° (P < 0.001). SVA improved from 14 to 4 cm (P < 0.001), and PT improved from 33° to 25° (P < 0.001). Mean increase in TK was 13° (P = 0.002) but was unchanged in 11 patients. Five patients had a favorable RC, and 18 patients had an unfavorable RC. Unfavorable RC was attributed to junctional failure in 6 of 18 patients. Significant differences in the unfavorable RC group included age and greater preoperative PT, PI, SVA, and T1SPI.
Significant postoperative alignment changes can occur through unfused thoracic spinal segments after lumbar PSO. Unfavorable RC may limit optimal correction and lead to clinical failures. Risk factors for unfavorable thoracic RC include older patients, larger preoperative PI and PT, and worse preoperative T1SPI and are not simply due to junctional failure. Care should be taken with selective lumbar fusion and PSO in older patients and in those with severe preoperative spinopelvic parameters.

Download full-text


Available from: Virginie Lafage,
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sagittal spinal misalignment (SSM) is an established cause of pain and disability. Treating physicians must be familiar with the radiographic findings consistent with SSM. Additionally, the restoration or maintenance of physiological sagittal spinal alignment after reconstructive spinal procedures is imperative to achieve good clinical outcomes. The C-7 plumb line (sagittal vertical axis) has traditionally been used to evaluate sagittal spinal alignment; however, recent data indicate that the measurement of spinopelvic parameters provides a more comprehensive assessment of sagittal spinal alignment. In this review the authors describe the proper analysis of spinopelvic alignment for surgical planning. Online videos supplement the text to better illustrate the key concepts.
    Journal of neurosurgery. Spine 03/2012; 16(6):547-64. DOI:10.3171/2012.2.SPINE11320 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surgical adolescent idiopathic scoliosis (AIS) management can be associated with loss of thoracic kyphosis and a secondary loss of lumbar lordosis leading to iatrogenic flatback. Such conditions are associated with poorer clinical outcomes during adulthood. The aim of this study was to evaluate sagittal plane reciprocal changes after posterior spinal fusion in the setting of AIS. Thirty consecutive adolescents (mean age 14.6 years) with AIS Lenke 1, 2 or 3 were included in this retrospective study with 2 year follow-up. Full-spine standing coronal and lateral radiographs were obtained preoperatively, at 3 and 24 months postoperatively. Coronal Cobb angle, thoracic kyphosis (TK) and lumbar lordosis (LL) were measured. Surgical procedure was similar in all the cases, with use of pedicular screws between T11 and the lowest instrumented vertebra (≥L2), sublaminar hooks applied in compression at the upper thoracic level and sub-laminar bands and clamps in the concavity of the deformity. Statistical analysis was done using t test and Pearson correlation coefficient. Between preoperative and last follow-up evaluations a significant reduction of Cobb angle was observed (53.6° vs. 17.2°, p < 0.001). A significant improvement of the instrumented thoracic kyphosis, TK (19.7° vs. 26.2°, p < 0.005) was noted, without difference between 3 and 24 months postoperatively. An improvement in lumbar lordosis, LL (43.9° vs. 47.3°, p = 0.009) was also noted but occurred after the third postoperative month. A significant correlation was found between TK correction and improvement of LL (R = 0.382, p = 0.037), without correlation between these reciprocal changes and the amount of coronal correction. Results from this study reveal that sagittal reciprocal changes occur after posterior fusion when TK is restored. These changes are visible after 3 months postoperatively, corresponding to a progressive adaptation of patient posture to the surgically induced alignment. These changes are not correlated with coronal plane correction of the deformity. In the setting of AIS, TK restoration is a critical goal and permits favorable postural adaptation. Further studies will include pelvic parameters and clinical scores in order to evaluate the impact of the noted reciprocal changes.
    European Spine Journal 06/2012; 21(10):1964-71. DOI:10.1007/s00586-012-2399-4 · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Object: Sagittal spinopelvic malalignment is a significant cause of pain and disability in patients with adult spinal deformity. Surgical correction of spinopelvic malalignment can result in compensatory changes in spinal alignment outside of the fused spinal segments. These compensatory changes, termed reciprocal changes, have been defined for thoracic and lumbar regions but not for the cervical spine. The object of this study was to evaluate postoperative reciprocal changes within the cervical spine following lumbar pedicle subtraction osteotomy (PSO). Methods: This was a multicenter retrospective radiographic analysis of patients from International Spine Study Group centers. Inclusion criteria were as follows: adults (>18 years old) with spinal deformity treated using lumbar PSO, a preoperative C7-S1 plumb line greater than 5 cm, and availability of pre- and postoperative full-length standing radiographs. Results: Seventy-five patients (60 women, mean age 59 years) were included. The lumbar PSO significantly improved sagittal alignment, including the C7-S1 plumb line, C7-T12 inclination, and pelvic tilt (p <0.001). After lumbar PSO, reciprocal changes were seen to occur in C2-7 cervical lordosis (from 30.8° to 21.6°, p <0.001), C2-7 plumb line (from 27.0 mm to 22.9 mm), and T-1 slope (from -38.9° to -30.4°, p <0.001). Ideal correction of sagittal malalignment (postoperative sagittal vertical alignment < 50 mm) was associated with the greatest relaxation of cervical hyperlordosis (-12.4° vs -5.7°, p = 0.037). A change in cervical lordosis correlated with changes in T-1 slope (r = -0.621, p <0.001), C7-T12 inclination (r = 0.418, p <0.001), T12-S1 angle (r = -0.339, p = 0.005), and C7-S1 plumb line (r = 0.289, p = 0.018). Radiographic parameters that correlated with changes in cervical lordosis on multivariate linear regression analysis included change in T-1 slope and change in C2-7 plumb line (r(2) = 0.53, p <0.001). Conclusions: Adults with positive sagittal spinopelvic malalignment compensate with abnormally increased cervical lordosis in an effort to maintain horizontal gaze. Surgical correction of sagittal malalignment results in improvement of the abnormal cervical hyperlordosis through reciprocal changes.
    Journal of neurosurgery. Spine 08/2012; 17(4):300-7. DOI:10.3171/2012.6.SPINE1250 · 2.38 Impact Factor
Show more