Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters

Antimicrobial Discovery Center and Department of Biology, Northeastern University, Boston, Massachusetts, USA.
mBio (Impact Factor: 6.88). 04/2011; 2(3):e00100-11. DOI: 10.1128/mBio.00100-11
Source: PubMed

ABSTRACT Tuberculosis continues to be a major public health problem in many parts of the world. Significant obstacles in controlling the epidemic are the length of treatment and the large reservoir of latently infected people. Bacteria form dormant, drug-tolerant persister cells, which may be responsible for the difficulty in treating both acute and latent infections. We find that in Mycobacterium tuberculosis, low numbers of drug-tolerant persisters are present in lag and early exponential phases, increasing sharply at late exponential and stationary phases to make up ~1% of the population. This suggests that persister formation is governed by both stochastic and deterministic mechanisms. In order to isolate persisters, an exponentially growing population was treated with d-cycloserine, and cells surviving lysis were collected by centrifugation. A transcriptome of persisters was obtained by using hybridization to an Affymetrix array. The transcriptome shows downregulation of metabolic and biosynthetic pathways, consistent with a certain degree of dormancy. A set of genes was upregulated in persisters, and these are likely involved in persister formation and maintenance. A comparison of the persister transcriptome with transcriptomes obtained for several in vitro dormancy models identified a small number of genes upregulated in all cases, which may represent a core dormancy response.

Download full-text


Available from: Iris Keren, Jul 02, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The early stages of antibiotic development include the identification of novel hit compounds. Since actinomycetes and myxobacteria are still the most important natural sources of active metabolites, we provide an overview on these producers and discuss three of the most promising approaches toward finding novel anti-infectives from microorganisms. These are defined as the use of biodiversity to find novel producers, the variation of culture conditions and induction of silent genes, and the exploitation of the genomic potential of producers via "genome mining". Challenges that exist beyond compound discovery are outlined in the last section.
    International journal of medical microbiology: IJMM 09/2013; DOI:10.1016/j.ijmm.2013.09.004 · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, E. coli and M. smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
    Molecular Microbiology 08/2013; DOI:10.1111/mmi.12358 · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) remains a major health threat, killing nearly 2 million individuals around this globe, annually. The only vaccine, developed almost a century ago, provides limited protection only during childhood. After decades without the introduction of new antibiotics, several candidates are currently undergoing clinical investigation. Curing TB requires prolonged combination of chemotherapy with several drugs. Moreover, monitoring the success of therapy is questionable owing to the lack of reliable biomarkers. To substantially improve the situation, a detailed understanding of the cross-talk between human host and the pathogen Mycobacterium tuberculosis (Mtb) is vital. Principally, the enormous success of Mtb is based on three capacities: first, reprogramming of macrophages after primary infection/phagocytosis to prevent its own destruction; second, initiating the formation of well-organized granulomas, comprising different immune cells to create a confined environment for the host-pathogen standoff; third, the capability to shut down its own central metabolism, terminate replication, and thereby transit into a stage of dormancy rendering itself extremely resistant to host defense and drug treatment. Here, we review the molecular mechanisms underlying these processes, draw conclusions in a working model of mycobacterial dormancy, and highlight gaps in our understanding to be addressed in future research.
    FEMS microbiology reviews 02/2012; 36(3):514-32. DOI:10.1111/j.1574-6976.2012.00331.x · 13.81 Impact Factor