Hypogonadotropic hypogonadism in subjects with DAX1 mutations

Division of Endocrinology, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
Molecular and Cellular Endocrinology (Impact Factor: 4.41). 06/2011; 346(1-2):65-73. DOI: 10.1016/j.mce.2011.04.017
Source: PubMed


DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1; also known as NROB1, nuclear receptor subfamily 0, group B, member 1) encodes a nuclear receptor that is expressed in embryonic stem (ES) cells, steroidogenic tissues (gonads, adrenals), the ventromedial hypothalamus (VMH), and pituitary gonadotropes. Humans with DAX1 mutations develop an X-linked syndrome referred to as adrenal hypoplasia congenita (AHC). These boys typically present in infancy with adrenal failure but later fail to undergo puberty because of hypogonadotropic hypogonadism (HHG). The adrenal failure reflects a developmental abnormality in the transition of the fetal to adult zone, resulting in glucocorticoid and mineralocorticoid deficiency. The etiology of HHG involves a combined and variable deficiency of hypothalamic GnRH secretion and/or pituitary responsiveness to GnRH resulting in low LH, FSH and testosterone. Treatment with exogenous gonadotropins generally does not induce spermatogenesis. Animal models indicate that DAX1 also plays a critical role in testis development and function. As a nuclear receptor, DAX1 has been shown to function as a transcriptional repressor, particularly of pathways regulated by other nuclear receptors, such as steroidogenic factor 1 (SF1). In addition to reproductive tissues, DAX1 is also expressed at high levels in ES cells and plays a role in the maintenance of pluripotentiality. Here we review the clinical manifestations associated with DAX1 mutations as well as the evolving information about its function based on animal models and in vitro studies.

1 Follower
22 Reads
  • Source
    • "DAX-1, a member of the orphan nuclear receptor family, is known to have an important role during development, particularly in gender determination and steroidogenesis (14,15). In humans, DAX-1 gene mutations usually lead to the X-linked congenital adrenal hypoplasia and primary adrenal insufficiency associated with hypogonadotropic hypogonadism (16,17). "
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNAs) are a class of short noncoding RNA molecules that have a critical role in the initiation and progression of types of human cancer, including prostate cancer. In the present study, the expression of miR-181 in prostate cancer tissues was evaluated and was demonstrated to be significantly upregulated in prostate cancer tissues compared with that in adjacent normal tissues. The results of in vitro MTT and BrdU incorporation assays, as well as cell-cycle analysis, indicated that miR-181 overexpression markedly promoted the proliferation of LNCaP cells. Furthermore, miR-181 overexpression was found to promote the progression of LNCaP tumor growth in nude mice. Mechanistic studies demonstrated that dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1), a negative regulator of androgen receptor in prostate cancer, was inhibited by miR-181 overexpression. Therefore, the results from the present study suggest that miR-181 functions as a growth-suppressive miRNA during prostate cancer development.
    Experimental and therapeutic medicine 10/2014; 8(4):1296-1300. DOI:10.3892/etm.2014.1846 · 1.27 Impact Factor
  • Source
    • "X-linked AHC is known to be associated with hypogonadotropic hypogonadism (HHG). Prolonged survival of these children into adulthood has shown that HHG is commonly associated with this disorder (28,30). Although the site of the deficiency within the hypothalamic-pituitary axis has not yet been pinpointed (31), the studies in two kindreds with HHG have shown that the hypothalamus as well as the pituitary and gonads are affected (26,27). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adrenal hypoplasia congenita (AHC) is a rare disorder. The X-linked form is related to mutations in the DAX1 (NROB1) gene. Here, we report a newborn who had a novel hemizygous frameshift mutation in DAX1 (c.543delA) and presented with primary adrenal failure that was initially misdiagnosed as congenital adrenal hyperplasia. This report highlights the value of genetic testing for definite diagnosis in children with primary adrenal failure due to abnormal adrenal gland development, providing the possibility both for presymptomatic, and in cases with a sibling with this condition, for prenatal diagnosis. Conflict of interest:None declared.
    Journal of Clinical Research in Pediatric Endocrinology 07/2013; 5(1). DOI:10.4274/Jcrpe.895
  • Source
    • "In the mouse, NR0B1 also plays a role in maintenance of the pluripotency of embryonic stem cells. Interestingly , this is mediated via transcriptional regulation of POU5F1, the mouse orthologue of human OCT3/4, which is a marker of CIS [Kelly et al., 2010; Jadhav et al., 2011]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There have been few testicular histology reports of adult patients with congenital adrenal hypoplasia/hypogonadal hypogonadism (AHC/HH), but Leydig cell hyperplasia has been observed, an indicator of the possibility of malignant transformation. We aimed to define the basis of AHC/HH in 4 pedigrees of different ethnic backgrounds. One patient was elected to have testicular biopsy which was examined for evidence of carcinoma in situ (CIS). NR0B1 mutation analysis was performed by sequence analysis. NR0B1 expression was investigated by RT-PCR. Testicular biopsy sections were stained with HE or immunostained for OCT3/4, an established marker of CIS. We identified NR0B1 variants in the 4 AHC pedigrees: pedigree 1 (United Arab Emirates), c.1130A>G predicting p.(Glu377Gly); pedigree 2 (English Caucasian), c.327C>A predicting p.(Cys109*); pedigree 3 (Oman), a 6-bp deletion of a direct repeat, c.857_862delTGGTGC predicting p.(Leu286_Val287del); pedigree 4 (English Caucasian), c.1168+1G>A, a regulatory variant within the NR0B1 splice donor site. This last male patient, aged 30 years, presented with evidence of HH but incomplete gonadotrophin deficiency, following an earlier diagnosis of Addison's disease at 3 years. Hormonal therapy induced virilisation. Testicular biopsy was performed. The c.1168+1G>A variant abrogated normal splicing of testicular mRNA. Histological examination showed poorly organised testicular architecture and absence of spermatozoa. Morphological analyses and the absence of immunohistochemical staining for OCT3/4 excluded the presence of malignant germ cell cancer and its precursor lesion, CIS. These studies add to the knowledge of the types and ethnic diversity of NR0B1 mutations and their associated phenotypes, and provide insight into the assessment and interpretation of testicular histology in AHC and HH.
    Sexual Development 09/2012; 6(6). DOI:10.1159/000342295 · 2.29 Impact Factor
Show more


22 Reads
Available from