Article

The Vascular Endothelial Growth Factor Receptor Inhibitor Sunitinib Causes a Preeclampsia-Like Syndrome With Activation of the Endothelin System

Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
Hypertension (Impact Factor: 7.63). 06/2011; 58(2):295-302. DOI: 10.1161/HYPERTENSIONAHA.111.173559
Source: PubMed

ABSTRACT Angiogenesis inhibition is an established treatment for several tumor types. Unfortunately, this therapy is associated with adverse effects, including hypertension and renal toxicity, referred to as "preeclampsia." Recently, we demonstrated in patients and in rats that the multitarget tyrosine kinase inhibitor sunitinib induces a rise in blood pressure (BP), renal dysfunction, and proteinuria associated with activation of the endothelin system. In the current study we investigated the effects of sunitinib on rat renal histology, including the resemblance with preeclampsia, as well as the roles of endothelin 1, decreased nitric oxide (NO) bioavailability, and increased oxidative stress in the development of sunitinib-induced hypertension and renal toxicity. In rats on sunitinib, light and electron microscopic examination revealed marked glomerular endotheliosis, a characteristic histological feature of preeclampsia, which was partly reversible after sunitinib discontinuation. The histological abnormalities were accompanied by an increase in urinary excretion of endothelin 1 and diminished NO metabolite excretion. In rats on sunitinib alone, BP increased (ΔBP: 31.6±0.9 mm Hg). This rise could largely be prevented with the endothelin receptor antagonist macitentan (ΔBP: 12.3±1.5 mm Hg) and only mildly with Tempol, a superoxide dismutase mimetic (ΔBP: 25.9±2.3 mm Hg). Both compounds could not prevent the sunitinib-induced rise in serum creatinine or renal histological abnormalities and had no effect on urine nitrates but decreased proteinuria and urinary endothelin 1 excretion. Our findings indicate that both the endothelin system and oxidative stress play important roles in the development of sunitinib-induced proteinuria and that the endothelin system rather than oxidative stress is important for the development of sunitinib-induced hypertension.

0 Bookmarks
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The last several decades have seen intensive research into the molecular mechanisms underlying the symptoms of preeclampsia. While the underlying cause of preeclampsia is believed to be defective placental development and resulting placental ischemia, it is only recently that the links between the ischemic placenta and maternal symptomatic manifestation have been elucidated. Several different pathways have been implicated in the development of the disorder; most notably production of the anti-angiogenic protein sFlt-1, induction of auto-immunity and inflammation, and production of reactive oxygen species. While the molecular mechanisms are becoming clearer, translating that knowledge into effective therapeutics has proven elusive. Here we describe a number of peptide based therapies we have developed to target theses pathways, and which are currently being tested in preclinical models. These therapeutics are based on a synthetic polymeric carrier elastin-like polypeptide (ELP), which can be synthesized in various sequences and sizes to stabilize the therapeutic peptide and avoid crossing the placental interface. This prevents fetal exposure and potential developmental effects. The therapeutics designed will target known pathogenic pathways, and the ELP carrier could prove to be a versatile delivery system for administration of a variety of therapeutics during pregnancy.
    Frontiers in Pharmacology 09/2014; 5:201. DOI:10.3389/fphar.2014.00201
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: The therapeutic use of the vascular endothelial growth factor (VEGF) antagonist sunitinib is limited by sunitinib-induced hypertension. The hypotheses were tested that sunitinib increases renal vascular resistance (RVR) and renal Na+ reabsorption, and that Rho kinase (ROCK) inhibition blunts sunitinib-induced hypertension. Methods: Sunitinib actions on human and rat resistance arteries were investigated by myography. The effects of sunitinib alone or in combination with a ROCK inhibitor on arterial pressure and renal function were investigated in rats by radiotelemetry, renal function and metabolism studies accompanied by biochemical, molecular and histological analyses. Results: Sunitinib blunted agonist-induced vasoconstriction and facilitated endothelium-dependent vasodilation. Within 4 days, sunitinib treatment caused arterial pressure and RVR to rise by 30 mmHg and 5 mmHg x ml(-1) x min x g kidney weight, respectively, accompanied by reduced glomerular filtration rate and fractional Na+ excretion with unaffected fractional Li+ excretion. ROCK inhibition blunted sunitinib-induced hypertension and prevented the early rise in RVR, but not the decrease in fractional Na+ excretion, which may explain its modest effect on sunitinib-induced hypertension. Conclusion: Our data indicate that early sunitinib-induced hypertension is associated with modest alterations in renal vascular function, but markedly increased renal sodium reabsorption, probably due to direct actions of the VEGF antagonist on the collecting duct, suggesting that VEGF receptors regulate renal Na+ absorption.
    Journal of Hypertension 11/2014; 32(11):2199-2210. DOI:10.1097/HJH.0000000000000326 · 4.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis inhibition, targeting vascular endothelial growth factor (VEGF) or its receptors, is an established treatment for solid tumors. A common side effect of this treatment is the development of sometimes severe hypertension. This hypertension is associated with a decrease in nitric oxide production, activation of the endothelin-signaling pathway and renin suppression. The mechanism underlying activation of the endothelin-signaling pathway is not fully understood. Both activation of endothelial cells and disinhibition of the VEGF-induced suppression of endothelin production by endothelial cells may be involved. The development of hypertension can be a reason to discontinue the angiogenesis inhibitor, thereby compromising anticancer treatment, but possibly is also a biomarker for a favorable antitumor response. Copyright © 2014. Published by Elsevier Ltd.
    Current Opinion in Pharmacology 12/2014; 21C:7-13. DOI:10.1016/j.coph.2014.11.010 · 4.23 Impact Factor