New strategy of photodynamic treatment of TiO2 nanofibers combined with celastrol for HepG2 proliferation in vitro.

State Key Lab of Bioelectronics (Chien-Shiung WU Laboratory), Southeast University, Nanjing, 210096, PR China.
Nanoscale (Impact Factor: 6.74). 06/2011; 3(8):3115-22. DOI: 10.1039/c1nr10185d
Source: PubMed

ABSTRACT As one of the best biocompatible semiconductor nanomaterials, TiO(2) nanofibers can act as a good photosensitizer material and show potential application in the field of drug carriers and photodynamic therapy to cure diseases. Celastrol, one of the active components extracted from T. wilfordii Hook F., was widely used in traditional Chinese medicine for many diseases. In this study, the cytotoxicity of celastrol for HepG2 cancer cells was firstly explored. The results showed that celastrol could inhibit cancer cell proliferation in a time-dependent and dose-dependent manner, inducing apoptosis and cell cycle arrest at G2/M phase in HepG2 cells. After the TiO(2) nanofibers were introduced into the system of celastrol, the cooperation effect showed that the nanocomposites between TiO(2) nanofibers and celastrol could enhance the cytotoxicity of celastrol for HepG2 cells and cut down the drug consumption so as to reduce the side-effect of the related drug. Associated with the photodynamic effect, it is evident that TiO(2) nanofibers could readily facilitate the potential application of the active compounds from natural products like celastrol. Turning to the advantages of nanotechnology, the combination of nanomaterials with the related monomer active compounds of promising Chinese medicine could play an important role to explore the relevant mechanism of the drug cellular interaction and promote the potential application of TiO(2) nanofibers in the clinical treatment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: TiO(2) doping with N-rich melamine produced a stable, active and visible light sensitized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound - methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order kinetics with the distinctive induction and acceleration periods.
    Nanoscale 07/2010; 2(7):1109-11. · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TiO(2) porous nanospheres on polypropylene (PP) films (TiO(2)/PP composite) are produced at ambient temperature. Particle/pore size match up is the key anchoring point to overcome the low affinity between hydrophilic materials and hydrophobic materials. With the hydrophilic TiO(2) catalyst evenly dispersed on a hydrophobic surface, the aqueous solution will selectively skip the substrate and wet the catalysts. Such a wettability-induced smart system maximizes the degrading activity of the TiO(2) catalyst. In photodegrading reactions, the resulting TiO(2)/PP composite film exhibits a 10 times higher activity in flow-type setup than the same TiO(2) catalyst in a traditional batch-type setup.
    Nanoscale 08/2010; 2(8):1480-4. · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To review the literature on herbal preparations commonly utilized in the treatment of rheumatic indications. Search of MEDLINE (PubMed) was performed using both the scientific and the common names of herbs. Relevant articles in English were collected from PubMed and reviewed. This review summarizes the efficacy and toxicities of herbal remedies used in complementary and alternative medical (CAM) therapies for rheumatologic conditions, by elucidating the immune pathways through which these preparations have antiinflammatory and/or immunomodulatory activity and providing a scientific basis for their efficacy. Gammalinolenic acid suppresses inflammation by acting as a competitive inhibitor of prostaglandin E2 and leukotrienes (LTs) and by reducing the auto-induction of interleukin1alpha (IL-1alpha)-induced pro-IL-1beta gene expression. It appears to be efficacious in rheumatoid arthritis (RA) but not for Sjogrens disease. The antiinflammatory actions of Harpagophytum procumbens is due to its action on eicosanoid biosynthesis and it may have a role in treating low back pain. While in vitro experiments with Tanacetum parthenium found inhibition of the expression of intercellular adhesion molecule-1, tumor necrosis factor alpha (TNF-alpha), interferon-gamma, IkappaB kinase, and a decrease in T-cell adhesion, to date human studies have not proven it useful in the treatment of RA. Current experience with Tripterygium wilfordii Hook F, Uncaria tomentosa, finds them to be efficacious in the treatment of RA, while Urtica diocia and willow bark extract are effective for osteoarthritis. T. wilfordii Hook F extract inhibits the production of cytokines and other mediators from mononuclear phagocytes by blocking the up-regulation of a number of proinflammatory genes, including TNF-alpha, cyclooxygenase 2 (COX-2), interferon-gamma, IL-2, prostaglandin, and iNOS. Uncaria tomentosa and Urtica diocia both decrease the production of TNF-alpha. At present there are no human studies on Ocimum spp. in rheumatic diseases. The fixed oil appears to have antihistaminic, antiserotonin, and antiprostaglandin activity. Zingiber officinale inhibits TNF-alpha, prostaglandin, and leukotriene synthesis and at present has limited efficacy in the treatment of osteoarthritis. Investigation of the mechanism and potential uses of CAM therapies is still in its infancy and many studies done to date are scientifically flawed. Further systematic and scientific inquiry into this topic is necessary to validate or refute the clinical claims made for CAM therapies. An understanding of the mechanism of action of CAM therapies allows physicians to counsel effectively on their proper and improper use, prevent adverse drug-drug interactions, and anticipate or appreciate toxicities. The use of CAM therapies is widespread among patients, including those with rheumatic diseases. Herbal medications are often utilized with little to no physician guidance or knowledge. An appreciation of this information will help physicians to counsel patients concerning the utility and toxicities of CAM therapies. An understanding and elucidation of the mechanisms by which CAM therapies may be efficacious can be instrumental in discovering new molecular targets in the treatment of diseases.
    Seminars in Arthritis and Rheumatism 07/2005; 34(6):773-84. · 3.63 Impact Factor