Article

Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
PLoS Biology (Impact Factor: 11.77). 06/2011; 9(6):e1001075. DOI: 10.1371/journal.pbio.1001075
Source: PubMed

ABSTRACT Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5' ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns.

Download full-text

Full-text

Available from: Marta Radman-Livaja, Jul 04, 2015
0 Followers
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are not static entities. They are highly mobile and their steady state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, post-translational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics we recently developed a genetic pulse-chase assay called Recombination-Induced Tag Exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in post-translational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag-switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.
    G3-Genes Genomes Genetics 05/2013; 3(8). DOI:10.1534/g3.113.006213 · 2.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-translational modifications of histone proteins have a crucial role in regulating gene expression. If efficiently re-established after chromosome duplication, histone modifications could help propagate gene expression patterns in dividing cells by epigenetic mechanisms. We used an integrated approach to investigate the dynamics of the conserved methylation of histone H3 Lys 79 (H3K79) by Dot1. Our results show that methylation of H3K79 progressively changes after histone deposition, which is incompatible with a rapid copy mechanism. Instead, methylation accumulates on ageing histones, providing the cell with a timer mechanism to directly couple cell-cycle length to changes in chromatin modification on the nucleosome core.
    EMBO Reports 07/2011; 12(9):956-62. DOI:10.1038/embor.2011.131 · 7.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been over 35years since the acceptance of the "chromatin subunit" hypothesis, and the recognition that nucleosomes are the fundamental repeating units of chromatin fibers. Major subjects of inquiry in the intervening years have included the steps involved in chromatin assembly, and the chaperones that escort histones to DNA. The following commentary offers an historical perspective on inquiries into the processes by which nucleosomes are assembled on replicating and nonreplicating chromatin. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
    Biochimica et Biophysica Acta 07/2011; 1819(3-4):196-210. DOI:10.1016/j.bbagrm.2011.07.005 · 4.66 Impact Factor