Article

Zyxin Links Fat Signaling to the Hippo Pathway

Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America.
PLoS Biology (Impact Factor: 11.77). 06/2011; 9(6):e1000624. DOI: 10.1371/journal.pbio.1000624
Source: PubMed

ABSTRACT The Hippo signaling pathway has a conserved role in growth control and is of fundamental importance during both normal development and oncogenesis. Despite rapid progress in recent years, key steps in the pathway remain poorly understood, in part due to the incomplete identification of components. Through a genetic screen, we identified the Drosophila Zyxin family gene, Zyx102 (Zyx), as a component of the Hippo pathway. Zyx positively regulates the Hippo pathway transcriptional co-activator Yorkie, as its loss reduces Yorkie activity and organ growth. Through epistasis tests, we position the requirement for Zyx within the Fat branch of Hippo signaling, downstream of Fat and Dco, and upstream of the Yorkie kinase Warts, and we find that Zyx is required for the influence of Fat on Warts protein levels. Zyx localizes to the sub-apical membrane, with distinctive peaks of accumulation at intercellular vertices. This partially overlaps the membrane localization of the myosin Dachs, which has similar effects on Fat-Hippo signaling. Co-immunoprecipitation experiments show that Zyx can bind to Dachs and that Dachs stimulates binding of Zyx to Warts. We also extend characterization of the Ajuba LIM protein Jub and determine that although Jub and Zyx share C-terminal LIM domains, they regulate Hippo signaling in distinct ways. Our results identify a role for Zyx in the Hippo pathway and suggest a mechanism for the role of Dachs: because Fat regulates the localization of Dachs to the membrane, where it can overlap with Zyx, we propose that the regulated localization of Dachs influences downstream signaling by modulating Zyx-Warts binding. Mammalian Zyxin proteins have been implicated in linking effects of mechanical strain to cell behavior. Our identification of Zyx as a regulator of Hippo signaling thus also raises the possibility that mechanical strain could be linked to the regulation of gene expression and growth through Hippo signaling.

0 Followers
 · 
138 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
    Proceedings of the National Academy of Sciences 01/2015; 112(6). DOI:10.1073/pnas.1420850112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deregulation of the evolutionarily conserved Hippo pathway has been implicated in abnormal development of animals and in several types of cancer. One mechanism of Hippo pathway regulation is achieved by controlling the stability of its regulatory components. However, the executive E3 ligases that are involved in this process, and how the process is regulated, remain poorly defined. In this study, we identify, through a genetic candidate screen, the SCF(Slmb) E3 ligase as a novel negative regulator of the Hippo pathway in Drosophila imaginal tissues via mediation of the degradation of Expanded (Ex). Mechanistic study shows that Slmb-mediated degradation of Ex is inhibited by the Hippo signaling. Considering the fact that Hippo signaling suppresses the transcription of ex, we propose that the Hippo pathway employs a double security mechanism to ensure fine-tuned homeostasis during development.Cell Research advance online publication 19 December 2014; doi:10.1038/cr.2014.166.
    Cell Research 12/2014; DOI:10.1038/cr.2014.166 · 11.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Hippo signaling pathway is involved in regulating tissue size by inhibiting cell proliferation and promoting apoptosis. Aberrant Hippo pathway function is often detected in human cancers and correlates with poor prognosis. The Drosophila C-terminal Src kinase (d-Csk) is a genetic modifier of warts (wts), a tumor-suppressor gene in the Hippo pathway, and interacts with the Src oncogene. Reduction in d-Csk expression and the consequent activation of Src are frequently seen in several cancers including hepatocellular and colorectal tumors. Previous studies show that d-Csk regulates cell proliferation and tissue size during development. Given the similarity in the loss-of-function phenotypes of d-Csk and wts, we have investigated the interactions of d-Csk with the Hippo pathway. Here we present multiple lines of evidence suggesting that d-Csk regulates growth via the Hippo signaling pathway. We show that loss of dCsk caused increased Yki activity, and our genetic epistasis places dCsk downstream of Dachs. Furthermore, dCsk requires Yki for its growth regulatory functions, suggesting that dCsk is another upstream member of the network of genes that interact to regulate Wts and its effector Yki in the Hippo signaling pathway.
    Developmental Biology 10/2014; 397(1). DOI:10.1016/j.ydbio.2014.10.010 · 3.64 Impact Factor

Preview (2 Sources)

Download
1 Download
Available from