Article

A biosensor generated via high throughput screening quantifies cell edge Src dynamics

Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Nature Chemical Biology (Impact Factor: 13.22). 06/2011; 7(7):437-44. DOI: 10.1038/nchembio.585
Source: PubMed

ABSTRACT Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high-throughput screening. We made this Src-family kinase (SFK) biosensor by derivatizing a monobody specific for activated SFKs with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and changes to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFKs are activated specifically during protrusion. Activity correlates with velocity, and peaks 1-2 μm from the leading edge.

1 Follower
 · 
184 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific binding proteins have become essential for diagnostic and therapeutic applications, and traditionally these have been antibodies. Nowadays an increasing number of alternative scaffolds have joined these ranks. These additional folds have raised a lot of interest and expectations within the last decade. It appears that they have come of age and caught up with antibodies in many fields of applications. The last years have seen an exploration of possibilities in research, diagnostics and therapy. Some scaffolds have received further improvements broadening their fields of application, while others have started to occupy their respective niche. Protein engineering, the prerequisite for the advent of all alternative scaffolds, remains the driving force in this process, for both non-immunoglobulins and immunoglobulins alike.
    Current Opinion in Structural Biology 08/2014; 27:102–112. DOI:10.1016/j.sbi.2014.05.011 · 8.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biosensors can be used in applications ranging from identifying disease biomarkers to detecting spatial and temporal distributions of specific molecules in living cells. A major challenge facing biosensor development is how to functionally couple a biological recognition domain to an output module so that the binding event can be transduced to a visible and quantifiable signal (e.g. Förster resonance energy transfer, or FRET). Most designs achieve coupling by means of a binding protein that changes conformation upon interacting with its target. This approach is limited by the fact that few proteins possess such natural allosteric mechanisms, and for those that do, the conformational change is frequently not extensive enough to produce a large distance change between FRET donor and acceptor groups. Here, we introduce protein FRagment EXchange (FREX) to address both problems. FREX employs two components: a folded binding protein and a fragment duplicated from it, the latter of which can be chosen from many possible fragments. The system is rationally tuned so that addition of ligand induces a conformational change in which the fragment exchanges positions with the corresponding segment of the binding protein. Placing fluorescent donor and acceptor groups on the binding protein and fragment reduces background FRET of the unbound sensor, resulting in a ratiometric FRET response that is expected to be strong and reproducible from protein to protein. FREX is demonstrated using fibronectin III, a monobody binding scaffold that has been tailored to recognize multiple targets. Sensors labeled with Alexa FRET pairs exhibit ratiometric FRET changes of up to 8.6-fold and perform equally well in buffer and in serum. A genetically-encoded variant of this sensor is shown to be functional in cell lysates and in mammalian cell cultures.
    Biochemistry 08/2014; 53(34). DOI:10.1021/bi500758u · 3.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monobodies are antibody alternatives derived from fibronectin that are thermodynamically stable, small in size, and can be produced in bacterial systems. Monobodies have been engineered to bind a wide variety of target proteins with high affinity and specificity. Using alanine-scanning mutagenesis simulations, we identified two scaffold residues that are critical to the binding interaction between the monobody YS1 and its ligand, maltose-binding protein (MBP). Steered molecular dynamics (SMD) simulations predicted that the E47A and R33A mutations in the YS1 scaffold substantially destabilize the YS1-MBP interface by reducing the bond rupture force and the lifetime of single hydrogen bonds. SMD simulations further indicated that the R33A mutation weakens the hydrogen binding between all scaffold residues and MBP and not just between R33 and MBP. We validated the simulation data and characterized the effects of mutations on YS1-MBP binding by using single-molecule force spectroscopy and surface plasmon resonance. We propose that interfacial stability resulting from R33 of YS1 stacking with R344 of MBP synergistically stabilizes both its own bond and the interacting scaffold residues of YS1. Our integrated approach improves our understanding of the monobody scaffold interactions with a target, thus providing guidance for the improved engineering of monobodies.
    Scientific Reports 02/2015; 5:8247. DOI:10.1038/srep08247 · 5.08 Impact Factor