Article

Nucleotide Sequence of the Na+/H+ Exchanger-8 in Patients With Congenital Sodium Diarrhea

Department of Pediatrics, Mattel Children's Hospital, David Geffen School of Medicine at the University of California, Los Angeles, USA.
Journal of pediatric gastroenterology and nutrition (Impact Factor: 2.87). 06/2011; 53(5):474-7. DOI: 10.1097/MPG.0b013e318227ad6e
Source: PubMed

ABSTRACT Sodium absorption by the intestine is mediated by brush border Na/H exchangers, which include the NHE3 and NHE8 isoforms. We demonstrated a maturational decrease in NHE8 and increase in NHE3 in mouse intestine mRNA abundance and brush border membrane protein abundance, indicating a developmental switch of isoforms. Congenital sodium diarrhea is a rare autosomal recessive disorder characterized by polyhydramnios, hyponatremia, metabolic acidosis, and diarrhea with a high sodium content. Previous studies using intestinal brush border membrane vesicles from patients with this disorder have demonstrated a decrease in Na/H exchanger activity. Because some patients with congenital sodium diarrhea improve with age and knowing the developmental switch from NHE8 to NHE3, NHE8 may be a candidate gene for this disorder. We sequenced NHE8 from 5 patients with this disorder and found no disease-causing homozygous mutations. Although brush border membrane Na/H exchange activity may be decreased, exonic mutations in NHE8 cannot account for this disorder in these subjects.

Download full-text

Full-text

Available from: Orson W Moe, Jul 04, 2015
0 Followers
 · 
119 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review, we focus on the recent (March 2010 to September 2011) advances in small intestinal ion transport, with particular emphasis on sodium, chloride, bicarbonate, and calcium transport mechanisms under physiological and pathophysiological conditions. Knockout of NHERF1 and NHERF2 allowed translation of the data largely derived from the in-vitro models into a living organism. These studies also expand our knowledge about the complexity of intestinal transporter interactomes, define the role for scaffolding proteins in basal and regulated apical transport, and help identify potential targets for pharmacological approaches. We continue to accumulate novel information about the function and regulation of NHE3 (including its role in regulating paracellular Ca2+ flux), NHE8, as well as about the complexity of the intestinal Cl- and HCO3- transport in health and disease. Thanks to the new genetically engineered mouse models, a significant progress has been made in our understanding of the role of NHERF proteins in regulation of intestinal Na+ absorption. Significant novel data on the coordinated function of bicarbonate, chloride, and sodium transporters contributes to our current views of the integrative physiology of the small intestinal electrolyte transport.
    Current opinion in gastroenterology 12/2011; 28(2):130-4. DOI:10.1097/MOG.0b013e32834e7bc3 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Na(+)/H(+) exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders.
    AJP Cell Physiology 03/2012; 302(11):C1569-87. DOI:10.1152/ajpcell.00017.2012 · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Caco-2 cell line represents absorptive polarized intestinal epithelial cells that express multiple forms of Na(+)/H(+) exchanger (NHE) in their plasma membranes. Caco-2 cells express the major apical NHE isoform NHE3, but low NHE3 expression together with inefficient transfection often hamper intended studies. In this study, we examined whether SK-CO15 cells could be used to study NHE3 regulation. SK-CO15 cells grown on Transwell inserts developed polarized epithelial cells with microvilli. The transfection efficiency of SK-CO15 cells was markedly higher compared with Caco-2 cells, an advantage in gene transfer and knockout. SK-CO15 cells expressed NHE1, NHE2, and NHE3. NHE3 expression was significantly greater in these cells than Caco-2, and NHE3 comprised more than half of total NHE activity. Apical expression of NHE3 in SK-CO15 cells was confirmed by confocal immunofluorescence and surface biotinylation. NHE regulatory factors NHERF1 and NHERF2, which are important for regulation of NHE3 activity, were expressed in these cells. Stimulatory response of NHE3 in SK-CO15 cells was assessed by dexamethasone and lysophosphatidic acid (LPA). Treatment with dexamethasone for 24-48 h increased NHE3 expression and activity. Similarly to Caco-2 cells, SK-CO15 cells lacked the expression of the LPA receptor LPA(5,) but exogenous expression of LPA(5) resulted in acute stimulation of NHE3. Forskolin acutely inhibited NHE3 activity in SK-CO15 cells, further attesting the validity of these cells. We conclude that SK-CO15 cells with the amenity for transfection and high endogenous NHE3 expression are a new and better cell model for NHE3 regulatory investigation than widely used Caco-2 cells.
    AJP Gastrointestinal and Liver Physiology 05/2012; 303(2):G180-8. DOI:10.1152/ajpgi.00069.2012 · 3.74 Impact Factor