Article

Accumulation of noncoding RNA due to an RNase P defect in Saccharomyces cerevisiae.

Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA.
RNA (Impact Factor: 4.62). 06/2011; 17(8):1441-50. DOI: 10.1261/rna.2737511
Source: PubMed

ABSTRACT Ribonuclease P (RNase P) is an essential endoribonuclease that catalyzes the cleavage of the 5' leader of pre-tRNAs. In addition, a growing number of non-tRNA substrates have been identified in various organisms. RNase P varies in composition, as bacterial RNase P contains a catalytic RNA core and one protein subunit, while eukaryotic nuclear RNase P retains the catalytic RNA but has at least nine protein subunits. The additional eukaryotic protein subunits most likely provide additional functionality to RNase P, with one possibility being additional RNA recognition capabilities. To investigate the possible range of additional RNase P substrates in vivo, a strand-specific, high-density microarray was used to analyze what RNA accumulates with a mutation in the catalytic RNA subunit of nuclear RNase P in Saccharomyces cerevisiae. A wide variety of noncoding RNAs were shown to accumulate, suggesting that nuclear RNase P participates in the turnover of normally unstable nuclear RNAs. In some cases, the accumulated noncoding RNAs were shown to be antisense to transcripts that commensurately decreased in abundance. Pre-mRNAs containing introns also accumulated broadly, consistent with either compromised splicing or failure to efficiently turn over pre-mRNAs that do not enter the splicing pathway. Taken together with the high complexity of the nuclear RNase P holoenzyme and its relatively nonspecific capacity to bind and cleave mixed sequence RNAs, these data suggest that nuclear RNase P facilitates turnover of nuclear RNAs in addition to its role in pre-tRNA biogenesis.

Full-text

Available from: Lars M Steinmetz, May 29, 2014
0 Followers
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the "telomerator," a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes.
    Proceedings of the National Academy of Sciences 11/2014; 111(48). DOI:10.1073/pnas.1414399111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The RNase P family is a diverse group of endonucleases responsible for the removal of 5' extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility.
    PLoS Genetics 08/2014; 10(8):e1004506. DOI:10.1371/journal.pgen.1004506 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonuclease P (RNase P) is an essential endonuclease that catalyzes the 5' end maturation of precursor tRNA (pre-tRNA). Bacterial RNase P is an attractive potential antibacterial target because it is essential for cell survival and has a distinct subunit composition compared to the eukaryal counterparts. To accelerate both structure-function studies and discovery of inhibitors of RNase P, we developed the first real-time RNase P activity assay using fluorescence polarization/anisotropy (FP/FA) with a 5' end fluorescein-labeled pre-tRNA(Asp) substrate. This FP/FA assay also detects binding of small molecules to pre-tRNA. Neomycin B and kanamycin B bind to pre-tRNA(Asp) with a Kd value that is comparable to their IC50 value for inhibition of RNase P, suggesting that binding of these antibiotics to the pre-tRNA substrate contributes to the inhibitory activity. This assay was optimized for high-throughput screening (HTS) to identify specific inhibitors of RNase P from a 2880 compound library. A natural product derivative, iriginol hexaacetate, was identified as a new inhibitor of Bacillus subtilis RNase P. The FP/FA methodology and inhibitors reported here will further our understanding of RNase P molecular recognition and facilitate discovery of antibacterial compounds that target RNase P.
    Nucleic Acids Research 09/2014; 42(20). DOI:10.1093/nar/gku850 · 8.81 Impact Factor