Article

Geldanamycin Analog 17-DMAG Limits Apoptosis in Human Peripheral Blood Cells by Inhibition of p53 Activation and its Interaction with Heat-Shock Protein 90 kDa after Exposure to Ionizing Radiation

Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA.
Radiation Research (Impact Factor: 2.45). 06/2011; 176(3):333-45. DOI: 10.2307/41318197
Source: PubMed

ABSTRACT Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50)  =  0.93 ± 0.01 µM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1 day after irradiation and enhanced survival at 10 days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.

0 Followers
 · 
61 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to (60)Co- γ -photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.
    Oxidative Medicine and Cellular Longevity 03/2014; 2014:481392. DOI:10.1155/2014/481392 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemorrhage increases inducible nitric oxide synthase (iNOS) and depletes ATP levels in various tissues. Previous studies have shown that geldanamycin, an inducer of heat shock protein 70kDa (HSP-70) and inhibitor of iNOS, limits both processes. Reduction in NO production limits lipid peroxidation, apoptosome formation, and caspase-3 activation, thereby increasing cellular survival and reducing the sequelae of hemorrhage. The poor solubility of geldanamycin in aqueous solutions, however, limits its effectiveness as a drug. 17-DMAG is a water-soluble analog of geldanamycin that might have greater therapeutic utility. This study investigated the effectiveness of 17-DMAG at reducing hemorrhagic injury in mouse small intestine. In mice, the hemorrhage-induced iNOS increase correlated with increases in Kruppel-like factor 6 (KLF6) and NF-kB and a decrease in KLF4. As a result, increases in NO production and lipid peroxidation occurred. Moreover, hemorrhage also resulted in decreased Bcl-2 and increased TNF-α, IL-6, and IL-10 concentrations, p53 protein, caspase-3 activation, and cellular ATP depletion. A shortening and widening of villi in the small intestine was also observed. Treatment with 17-DMAG significantly reduced the hemorrhage-induced increases in iNOS protein, jejunal alteration, and TNF-α and IL-10 concentrations, but 17-DMAG did not affect the hemorrhage-induced increases in p53 and IL-6 concentration. 17-DMAG treatment by itself upregulated HSP-70, Bcl-2, and p53. Since 17-DMAG is water soluble, bioactive, and not toxic, 17-DMAG may prove useful as a prophylactic drug for hemorrhage.
    06/2011; 1(1):21. DOI:10.1186/2045-3701-1-21
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the cell, proteins interact within a network in which a small number of proteins are highly connected nodes or hubs. A disturbance in the hub proteins usually has a higher impact on the cell physiology than a disturbance in poorly connected nodes. In eukaryotes, the cytosolic Hsp90 is considered to be a hub protein as it interacts with molecular chaperones and co-chaperones, and has key regulatory proteins as clients, such as transcriptional factors, protein kinases and hormone receptors. The large number of Hsp90 partners suggests that Hsp90 is involved in very important functions, such as signaling, proteostasis and epigenetics. Some of these functions are dysregulated in cancer, making Hsp90 a potential target for therapeutics. The number of Hsp90 interactors appears to be so large that a precise answer to the question of how many proteins interact with this chaperone has no definitive answer yet, not even if the question refers to specific Hsp90s as one of the human cytosolic forms. Here we review the major chaperones and co-chaperones that interact with cytosolic Hsp90s, highlighting the latest findings regarding client proteins and the role that posttranslational modifications have on the function and interactions of these molecular chaperones. This article is part of a Special Issue entitled: Proteomics: The clinical link.
    Journal of proteomics 01/2012; 75(10):2790-802. DOI:10.1016/j.jprot.2011.12.028 · 3.93 Impact Factor