Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses.

Center for Computational Biology and Bioinformatics and Department of Biomedical Informatics, Columbia University, 1130 St. Nicolas Ave, New York, NY 10032, USA.
Neuron (Impact Factor: 15.98). 06/2011; 70(5):898-907. DOI: 10.1016/j.neuron.2011.05.021
Source: PubMed

ABSTRACT Identification of complex molecular networks underlying common human phenotypes is a major challenge of modern genetics. In this study, we develop a method for network-based analysis of genetic associations (NETBAG). We use NETBAG to identify a large biological network of genes affected by rare de novo CNVs in autism. The genes forming the network are primarily related to synapse development, axon targeting, and neuron motility. The identified network is strongly related to genes previously implicated in autism and intellectual disability phenotypes. Our results are also consistent with the hypothesis that significantly stronger functional perturbations are required to trigger the autistic phenotype in females compared to males. Overall, the presented analysis of de novo variants supports the hypothesis that perturbed synaptogenesis is at the heart of autism. More generally, our study provides proof of the principle that networks underlying complex human phenotypes can be identified by a network-based functional analysis of rare genetic variants.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rare de novo and inherited copy number variations (CNVs) have been implicated in autism spectrum disorder (ASD) risk. However, the genetic underpinnings of ASD remain unknown in more than 80% of cases. Therefore, identification of novel candidate genes and corroboration of known candidate genes may broaden the horizons of determining genetic risk alleles, and subsequent development of diagnostic testing. Here, using genotyping arrays, we characterized the genetic architecture of rare CNVs (<1% frequency) in a Finnish case-control dataset. Unsurprisingly, ASD cases harbored a significant excess of rare, large (>1 Mb) CNVs and rare, exonic CNVs. The exonic rare de novo CNV rate (∼22.5%) seemed higher compared to previous reports. We identified several CNVs in well-known ASD regions including GSTM1-5, DISC1, FHIT, RBFOX1, CHRNA7, 15q11.2, 15q13.2-q13.3, 17q12, and 22q11.21. Additionally, several novel candidate genes (BDKRB1, BDKRB2, AP2M1, SPTA1, PTH1R, CYP2E1, PLCD3, F2RL1, UQCRC2, LILRB3, RPS9, and COL11A2) were identified through gene prioritization. The majority of these genes belong to neuroactive ligand-receptor interaction pathways, and calcium signaling pathways, thus suggesting that a subset of these novel candidate genes may contribute to ASD risk. Furthermore, several metabolic pathways like caffeine metabolism, drug metabolism, retinol metabolism, and calcium-signaling pathway were found to be affected by the rare exonic ASD CNVs. Additionally, biological processes such as bradykinin receptor activity, endoderm formation and development, and oxidoreductase activity were enriched among the rare exonic ASD CNVs. Overall, our findings may add data about new genes and pathways that contribute to the genetic architecture of ASD. Autism Res 2015. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
    Autism Research 06/2015; DOI:10.1002/aur.1502 · 4.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism has been described as a disorder of general neural processing, but the particular processing characteristics that might be abnormal in autism have mostly remained obscure. Here, we present evidence of one such characteristic: poor evoked response reliability. We compared cortical response amplitude and reliability (consistency across trials) in visual, auditory, and somatosensory cortices of high-functioning individuals with autism and con-trols. Mean response amplitudes were statistically indistinguishable across groups, yet trial-by-trial response reliability was significantly weaker in autism, yielding smaller signal-to-noise ratios in all sensory systems. Response reliability differences were evident only in evoked cortical responses and not in ongoing resting-state activity. These findings reveal that abnormally unreliable cortical responses, even to elementary nonsocial sensory stimuli, may represent a fundamental physiological alteration of neural processing in autism. The results motivate a critical expansion of autism research to determine whether (and how) basic neural processing proper-ties such as reliability, plasticity, and adaptation/ habituation are altered in autism.
    Neuron 09/2012; 75(6). DOI:10.1016/j.neuron.2012.07.026 · 15.98 Impact Factor
  • Source
    ANAE - Approche Neuropsychologique des Apprentissages chez l'Enfant 01/2014; 128(26):1-10.

Preview (4 Sources)

Available from