Vorinostat induced cellular stress disrupts the p38 mitogen activated protein kinase and extracellular signal regulated kinase pathways leading to apoptosis in Waldenstrom macroglobulinemia cells

Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
Leukemia & lymphoma (Impact Factor: 2.89). 06/2011; 52(9):1777-86. DOI: 10.3109/10428194.2011.577850
Source: PubMed


Histone deacetylases (HDACs) are aberrantly expressed, and inhibitors of HDACs induce apoptosis in lymphoplasmacytic cells (LPCs) in Waldenström macroglobulinemia (WM). The molecular profile by which these agents induce apoptosis in WM LPCs remains to be delineated. We examined the activity of the histone deacetylase inhibitor, vorinostat, and dissected its pro-apoptotic pathways in WM LPCs. Vorinostat induced apoptosis in WM cells through activating specific caspases at varying times. Inhibitors of apoptosis (IAPs) were down-regulated after vorinostat treatment. Cellular stress induced in vorinostat-treated WM cells was reflected by changes in the mitogen activated protein kinase (MAPK) pathways. Activated phospho-p38 MAPK was up-regulated at 12 h, while phospho-extracellular signal-regulated kinase (Erk) abruptly decreased at 24 h. Bortezomib did not augment vorinostat induced primary WM cell killing as reported in other B-cell disorders. These studies support that stress induced apoptosis in vorinostat-treated WM LPCs is mediated through disrupting the activity of the Erk and p38 MAPK pathways.

Download full-text


Available from: Steven Treon, Jun 05, 2014
  • Source

    Leukemia & lymphoma 09/2011; 52(9):1623-5. DOI:10.3109/10428194.2011.573890 · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 4-phenyl-3-butenoic acid (PBA) is a small-molecule anti-inflammatory agent, which has been shown to inhibit growth, increase gap junction intercellular communication and modulate activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-jun n-terminal kinase (JNK) in tumorigenic cells at concentrations that do not similarly affect non-tumorigenic cells. Vorinostat is an anticancer agent structurally similar to PBA. The purpose of this study was to compare the effects of these two agents on JNK and p38 activation, cell growth and gap junction intercellular communication (GJIC). Cell growth, GJIC and western blot analyses were performed utilizing tumorigenic WBras1 and H2009 human carcinoma cells, and non-tumorigenic WBneo3 and human bronchial epithelial (HBE) cells. Both compounds significantly inhibited WBras1 and H2009 tumorigenic cell growth and increased GJIC in WBras1 cells, as previously reported for PBA. Under similar conditions, both compounds increased phosphorylation of p38 MAPK in tumorigenic but not in non-tumorigenic cells and decreased phosphorylation of JNK in tumorigenic cells. However, a decrease in phosphorylation of JNK occurred in non-tumorigenic WBras1 cells following vorinostat treatment but not PBA treatment. Both compounds showed a selective growth inhibition of H2009 human carcinoma over normal HBE lung cells but, unlike PBA, vorinostat significantly decreased cell growth in WBneo3 cells. Overall, PBA exhibited similar effects to vorinostat in tumorigenic cells, while also showing reduced effects on JNK phosphorylation and growth in non-tumorigenic cells compared to ras-transformed cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
    Anticancer research 02/2015; 35(2):775-84. · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Waldenström macroglobulinemia (WM) is a distinct hematologic malignancy characterized by a lymphoplasmacytic bone marrow infiltration and the presence of immunoglobulin (Ig)M monoclonal protein. Patients typically present at an advanced age, and a substantial proportion are asymptomatic at diagnosis. A unifying diagnosis of WM may be missed by an unsuspecting hematologist, as symptomatic patients present with a multitude of non-specific manifestations. Although constitutional and neuropathy-related symptoms predominate, concomitant IgM-induced hyperviscosity-associated features can provide useful diagnostic clues. There are specific indications for initiation of therapy. This review focuses on the most up-to-date management strategies of WM, in addition to highlighting the recent discoveries of MYD88 and CXCR4 mutations that have shed unprecedented light on the complex signaling pathways, and opened avenues for novel therapeutic targeting. Although WM remains incurable, with the rapid emergence and integration of effective novel therapies, its clinical course appears poised to improve in the foreseeable future. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Blood reviews 03/2015; 118(5). DOI:10.1016/j.blre.2015.03.001 · 5.57 Impact Factor