Biodiversity and leptospirosis risk: A case of pathogen regulation?

School of Population Health, Level 2 Public Health Building, University of Queensland, Herston Qld 4006, Australia.
Medical Hypotheses (Impact Factor: 1.15). 06/2011; 77(3):339-44. DOI: 10.1016/j.mehy.2011.05.009
Source: PubMed

ABSTRACT Well balanced ecosystems have an essential role in disease regulation, and consequently their correct functioning is increasingly recognised as imperative for maintaining human health. Disruptions to ecosystems have been found to increase the risk of several diseases, including Hantavirus, Lyme disease, Ross River virus, malaria and Ciguatera fish poisoning. Leptospirosis is a globally important emerging zoonosis, caused by spirochaete bacteria, borne by many mammalian hosts, and also transmitted environmentally. We propose that leptospirosis incidence in humans is also linked to ecosystem disruption, and that reduced biodiversity (the diversity of species within an ecological community) may be associated with increased leptospirosis incidence. To investigate this hypothesis, the relationship between biodiversity levels of island nations and their annual leptospirosis incidence rates (adjusted for GDP per capita) was examined by linear correlation and regression. Supportive, statistically significant negative associations were obtained between leptospirosis incidence and (a) total number of species (r2=0.69, p<0.001) and (b) number of mammal species (r2=0.80, p<0.001) in univariate analysis. In multivariable analysis only the number of mammal species remained significantly associated (r2=0.81, p=0.007). An association between biodiversity and reduced leptospirosis risk, if supported by further research, would emphasise the importance of managing the emergence of leptospirosis (and other infectious diseases) at a broader, ecosystem level.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Puumala virus (PUUV) is a major cause of mild to moderate haemorrhagic fever with renal syndrome and is transmitted by the bank vole (Myodes glareolus). There has been a high cumulative incidence of recorded human cases in South-eastern Germany since 2004 when the region was first recognized as being endemic for PUUV. As the area is well known for outdoor recreation and the Bavarian Forest National Park (BFNP) is located in the region, the increasing numbers of recorded cases are of concern. To understand the population and environmental effects on the seroprevalence of PUUV in bank voles we trapped small mammals at 23 sites along an elevation gradient from 317 to 1420m above sea level. Generalized linear mixed effects models(GLMEM) were used to explore associations between the seroprevalence of PUUV in bank voles and climate and biotic factors. We found that the seroprevalence of PUUV was low (6%-7%) in 2008 and 2009, and reached 29% in 2010. PUUV seroprevalence was positively associated with the local species diversity and deadwood layer, and negatively associated with mean annual temperature, mean annual solar radiation, and herb layer. Based on these findings, an illustrative risk map for PUUV seroprevalence prediction in bank voles was created for an area of the national park. The map will help when planning infrastructure in the national park (e.g., huts, shelters, and trails).
    Viruses 10/2014; 6(10):3944-67. DOI:10.3390/v6103944 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Interest in the study of infectious diseases of wildlife has grown in recent decades and now focuses on understanding host-parasite dynamics and factors involved in disease occurrence. The black-tailed prairie dog (Cynomys ludovicianus) is a useful species for this type of investigation because it lives in heterogeneous landscapes where human activities take place, and its populations are structured as a metapopulation. Our goal was to determine if colony area, density, and proximity to human settlements are associated with prevalence of antibodies to Leptospira interrogans in black-tailed prairie dogs of northwestern Chihuahua State, Mexico. We captured 266 prairie dogs in 11 colonies in 2009 and analyzed 248 serum samples with the microscopic agglutination test (MAT) for antibody to any of the 12 pathogenic serovars of L. interrogans. Serologically positive test results for only serovars Bratislava, Canicola, Celledoni, and Tarassovi were considered for statistical analysis. Almost 80% of sera were positive for at least one pathogenic serovar (MAT titer ≥1∶80). The highest recorded antibody prevalences were to serovars Bratislava and Canicola. Correlation analysis showed a negative relationship between L. interrogans antibody prevalence and colony area (r = -0.125, P<0.005), suggesting that animals living in larger colonies were at a lower risk than those in smaller colonies. The correlation between the serovar Canicola and distance was negative (r = -0.171, P<0.007), and this relationship may be explained by the presence of domestic dogs associated with human dwellings. This is the first study of Leptospira spp. antibody prevalence in prairie dogs, and it provides valuable insights into the dynamics of leptospirosis in threatened wildlife species. Further studies are needed to evaluate the impact of Leptospira serovars in metapopulations of prairie dogs and other domestic and wild mammals in grassland communities.
    Journal of wildlife diseases 11/2014; 51(1). DOI:10.7589/2013-10-259 · 1.31 Impact Factor
  • Source