Spontaneous metastasis in mouse models of testicular germ-cell tumours

Department of Genetics, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Institute of Pathology, Cleveland OH, USA.
International Journal of Andrology (Impact Factor: 3.7). 06/2011; 34(4 Pt 2):e278-87. DOI: 10.1111/j.1365-2605.2011.01160.x
Source: PubMed


Testicular germ-cell tumours (TGCTs) are the most common cancer in young men; the incidence is increasing worldwide and they have an unusually high rate of metastasis. Despite significant work on TGCTs and their metastases in humans, absence of a mouse model of spontaneous metastasis has greatly limited our understanding of the mechanisms by which metastatic potential is acquired and on their modes of dissemination. We report a new model of spontaneous TGCT metastasis in the 129 family of mice and provide evidence that these are true metastases derived directly from primary testicular cancers rather than independently from ectopic stem cells. These putative metastases (pMETs) occur at similar frequencies among TGCT-affected males in six genetically distinct TGCT-susceptible strains and were largely found in anatomical sites that are consistent with patterns of TGCT metastasis in humans. Various lines of evidence support their pluripotency and germ-cell origin, including presence of multiple endodermal, mesodermal and ectodermal derivatives as well as cells showing OCT4 and SSEA-1 pluripotency markers. In addition, pMETs were never found in males that did not have a TGCT, suggesting that metastases are derived from primary tumours. Finally, pMETS and primary TGCTs shared several DNA copy number variants suggesting a common cellular and developmental origin. Together, these results provide the first evidence for spontaneous TGCT metastasis in mice and show that these metastases originate from primary TGCTs rather than independently from ectopic stem cells.

  • Source
    • "Dnd1+/KO males are offspring of both Dnd1+/+ × Dnd1+/KO and Dnd1+/KO × Dnd1+/+ reciprocal crosses. ǂ Results from Zechel et al.[51]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Certain mutations in the Deadend1 (Dnd1) gene are the most potent modifiers of testicular germ cell tumor (TGCT) susceptibility in mice and rats. In the 129 family of mice, the Dnd1Ter mutation significantly increases occurrence of TGCT-affected males. To test the hypothesis that he Dnd1Ter allele is a loss-of-function mutation; we characterized the consequences of a genetically-engineered loss-of-function mutation in mice, and compared these results with those for Dnd1Ter. Results We found that intercrossing Dnd1+/KO heterozygotes to generate a complete loss-of-function led to absence of Dnd1KO/KO homozygotes and significantly reduced numbers of Dnd1+/KO heterozygotes. Further crosses showed that Dnd1Ter partially rescues loss of Dnd1KO mice. We also found that loss of a single copy of Dnd1 in Dnd1KO/+ heterozygotes did not affect baseline occurrence of TGCT-affected males and that Dnd1Ter increased TGCT risk regardless whether the alternative allele was loss-of-function (Dnd1KO) or wild-type (Dnd1+). Finally, we found that the action of Dnd1Ter was not limited to testicular cancer, but also significantly increased polyp number and burden in the Apc+/Min model of intestinal polyposis. Conclusion These results show that Dnd1 is essential for normal allelic inheritance and that Dnd1Ter has a novel combination of functions that significantly increase risk for both testicular and intestinal cancer.
    BMC Genetics 06/2013; 14(1):54. DOI:10.1186/1471-2156-14-54 · 2.40 Impact Factor
  • Source
    • "Spontaneous formation of testicular teratomas was described in the 129/Sv mouse strain in the early 1950ies [19] and these tumors can be accompanied by metastases [20]. TGCT development was detected in 1% of male 129/Sv mice, while an additional mutation in a modifier gene referred to as Ter increased the incidence of TGCT to 17% in Ter/+ and to 94% in Ter/Ter males. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A spontaneous mutation leading to the formation of congenital ovarian and testicular tumors was detected in the WKY/Ztm rat strain. The histological evaluation revealed derivatives from all three germ layers, thereby identifying these tumors as teratomas. Teratocarcinogenesis was accompanied by infertility and the underlying mutation was termed ter. Linkage analysis of 58 (WKY-ter×SPRD-Cu3) F2 rats associated the ter mutation with RNO18 (LOD = 3.25). Sequencing of candidate genes detected a point mutation in exon 4 of the dead-end homolog 1 gene (Dnd1), which introduces a premature stop codon assumed to cause a truncation of the Dnd1 protein. Genotyping of the recessive ter mutation revealed a complete penetrance of teratocarcinogenesis and infertility in homozygous ter rats of both genders. Morphologically non-tumorous testes of homozygous ter males were reduced in both size and weight. This testicular malformation was linked to a lack of spermatogenesis using immunohistochemical and histological staining. Our WKY-Dnd1(ter)/Ztm rat is a novel animal model to investigate gonadal teratocarcinogenesis and the molecular mechanisms involved in germ cell development of both genders.
    PLoS ONE 05/2012; 7(5):e38001. DOI:10.1371/journal.pone.0038001 · 3.23 Impact Factor

  • International Journal of Andrology 08/2011; 34(4 Pt 2):e2-6. DOI:10.1111/j.1365-2605.2011.01213.x · 3.70 Impact Factor
Show more