Article

Modeling the functional genomics of autism using human neurons

Department of Neurology, Center for Autism Research and Treatment, Semel Institute and Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Molecular Psychiatry (Impact Factor: 15.15). 06/2011; 17(2):202-14. DOI: 10.1038/mp.2011.60
Source: PubMed

ABSTRACT Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.

0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a highly heritable, behaviorally defined, heterogeneous disorder of unknown pathogenesis. Several genetic risk genes have been identified, including the gene encoding the receptor tyrosine kinase MET, which regulates neuronal differentiation and growth. An ASD-associated polymorphism disrupts MET gene transcription, and there are reduced levels of MET protein expression in the mature temporal cortex of subjects with ASD. To address the possible neurodevelopmental contribution of MET to ASD pathogenesis, we examined the expression and transcriptional regulation of MET by a transcription factor, FOXP2, which is implicated in regulation of cognition and language, two functions altered in ASD. MET mRNA expression in the midgestation human fetal cerebral cortex is strikingly restricted, localized to portions of the temporal and occipital lobes. Within the cortical plate of the temporal lobe, the pattern of MET expression is highly complementary to the expression pattern of FOXP2, suggesting the latter may play a role in repression of gene expression. Consistent with this, MET and FOXP2 also are reciprocally expressed by differentiating normal human neuronal progenitor cells (NHNPs) in vitro, leading us to assess whether FOXP2 transcriptionally regulates MET. Indeed, FOXP2 binds directly to the 5' regulatory region of MET, and overexpression of FOXP2 results in transcriptional repression of MET. The expression of MET in restricted human neocortical regions, and its regulation in part by FOXP2, is consistent with genetic evidence for MET contributing to ASD risk.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 08/2011; 31(32):11437-42. DOI:10.1523/JNEUROSCI.0181-11.2011 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorder (ASD) is a phenotypically and genetically heterogeneous condition characterized by the presence of repetitive/restrictive behaviors and variable deficits in language and social behavior. Many genes predisposing an individual to ASD have been identified, and understanding the causal disease mechanism(s) is critical to be able to develop treatments. Neurobiological, genetic, and imaging data provide strong evidence for the CNTNAP2 gene as a risk factor for ASD and related neurodevelopmental disorders. This review discusses the clinical genetics and current understanding of the biology of CNTNAP2 as related to ASD and illustrates how the integration of multiple research approaches, from human studies to animal models, converge to inform functional biology focused on novel treatment development.
    Trends in Molecular Medicine 02/2012; 18(3):156-63. DOI:10.1016/j.molmed.2012.01.003 · 10.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deletion or duplication of one copy of the human 16p11.2 interval is tightly associated with impaired brain function, including autism spectrum disorders (ASDs), intellectual disability disorder (IDD) and other phenotypes, indicating the importance of gene dosage in this copy number variant region (CNV). The core of this CNV includes 25 genes; however, the number of genes that contribute to these phenotypes is not known. Furthermore, genes whose functional levels change with deletion or duplication (termed 'dosage sensors'), which can associate the CNV with pathologies, have not been identified in this region. Using the zebrafish as a tool, a set of 16p11.2 homologs was identified, primarily on chromosomes 3 and 12. Use of 11 phenotypic assays, spanning the first 5 days of development, demonstrated that this set of genes is highly active, such that 21 out of the 22 homologs tested showed loss-of-function phenotypes. Most genes in this region were required for nervous system development - impacting brain morphology, eye development, axonal density or organization, and motor response. In general, human genes were able to substitute for the fish homolog, demonstrating orthology and suggesting conserved molecular pathways. In a screen for 16p11.2 genes whose function is sensitive to hemizygosity, the aldolase a (aldoaa) and kinesin family member 22 (kif22) genes were identified as giving clear phenotypes when RNA levels were reduced by ~50%, suggesting that these genes are deletion dosage sensors. This study leads to two major findings. The first is that the 16p11.2 region comprises a highly active set of genes, which could present a large genetic target and might explain why multiple brain function, and other, phenotypes are associated with this interval. The second major finding is that there are (at least) two genes with deletion dosage sensor properties among the 16p11.2 set, and these could link this CNV to brain disorders such as ASD and IDD.
    Disease Models and Mechanisms 05/2012; 5(6). DOI:10.1242/dmm.009944 · 5.54 Impact Factor
Show more

Preview

Download
2 Downloads
Available from