Surface imaging using holographic optical tweezers.

H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Clifton, Bristol BS8 1TL, UK.
Nanotechnology (Impact Factor: 3.84). 07/2011; 22(28):285503. DOI: 10.1088/0957-4484/22/28/285503
Source: PubMed

ABSTRACT We present an imaging technique using an optically trapped cigar-shaped probe controlled using holographic optical tweezers. The probe is raster scanned over a surface, allowing an image to be taken in a manner analogous to scanning probe microscopy (SPM), with automatic closed loop feedback control provided by analysis of the probe position recorded using a high speed CMOS camera. The probe is held using two optical traps centred at least 10 µm from the ends, minimizing laser illumination of the tip, so reducing the chance of optical damage to delicate samples. The technique imparts less force on samples than contact SPM techniques, and allows highly curved and strongly scattering samples to be imaged, which present difficulties for imaging using photonic force microscopy. To calibrate our technique, we first image a known sample--the interface between two 8 µm polystyrene beads. We then demonstrate the advantages of this technique by imaging the surface of the soft alga Pseudopediastrum. The scattering force of our laser applied directly onto this sample is enough to remove it from the surface, but we can use our technique to image the algal surface with minimal disruption while it is alive, not adhered and in physiological conditions. The resolution is currently equivalent to confocal microscopy, but as our technique is not diffraction limited, there is scope for significant improvement by reducing the tip diameter and limiting the thermal motion of the probe.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beyond the ubiquitous colloidal sphere, optical tweezers are capable of trapping myriad exotic particles with wildly varying geometries and compositions. This simple fact opens up numerous opportunities for micro-manipulation, directed assembly and characterization of novel nanostructures. Furthermore, the mechanical properties of optical tweezers are transformed by their contents. For example, traps capable of measuring, or applying, femto-Newton scale forces with nanometric spatial resolution can be designed. Analogous, if not superior, angular sensitivity can be achieved, enabling the creation of exquisitely sensitive torque wrenches. These capacities, and others, lead to a multitude of novel applications in the meso- and nanosciences. In this article we review experimental and theoretical work on the relationship between particle geometry, composition and trap properties. A range of associated metrological techniques are discussed.
    Journal of Quantitative Spectroscopy and Radiative Transfer 01/2014; 146:81–99. · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Holographic Optical Tweezers (HOT) are a versatile way of manipulating microscopic particles in 3D. However, their ease of use has been hampered by the computational load of calculating the holograms, resulting in an unresponsive system. We present a program for generating these holograms on a consumer Graphics Processing Unit (GPU), coupled to an easy-to-use interface in LabVIEW (National Instruments). This enables a HOT system to be set up without writing any additional code, as well as providing a platform enabling the fast generation of other holograms. The GPU engine calculates holograms over 300 times faster than the same algorithm running on a quad core CPU. The hologram algorithm can be altered on-the-fly without recompiling the program, allowing it to be used to control Spatial Light Modulators in any situation where the hologram can be calculated in a single pass. The interface has also been rewritten to take advantage of new features in LabVIEW 2010. It is designed to be easily modified and extended to integrate with hardware other than our own.
    Computer Physics Communications 01/2014; 185(1):268-273. · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Back-focal plane (BFP) interferometry is a very fast and precise method to track the 3D position of a sphere within a focused laser beam using a simple quadrant photo diode (QPD). Here we present a concept of how to track and recover the 5D state of a cylindrical nanorod (3D position and 2 tilt angles) in a laser focus by analyzing the interference of unscattered light and light scattered at the cylinder. The analytical theoretical approach is based on Rayleigh-Gans scattering together with a local field approximation for an infinitely thin cylinder. The approximated BFP intensities compare well with those from a more rigorous numerical approach. It turns out that a displacement of the cylinder results in a modulation of the BFP intensity pattern, whereas a tilt of the cylinder results in a shift of this pattern. We therefore propose the concept of a local QPD in the BFP of a detection lens, where the QPD center is shifted by the angular coordinates of the cylinder tilt.
    Optics Express 03/2014; 22(5):6114-32. · 3.55 Impact Factor


Available from
May 20, 2014