Article

Characterization of the Inhibitory Effects of N-Butylpyridinium Chloride and Structurally Related Ionic Liquids on Organic Cation Transporters 1/2 and Human Toxic Extrusion Transporters 1/2-K In Vitro and In Vivo

Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724-5050, USA.
Drug metabolism and disposition: the biological fate of chemicals (Impact Factor: 3.33). 06/2011; 39(9):1755-61. DOI: 10.1124/dmd.110.035865
Source: PubMed

ABSTRACT Ionic liquids (ILs) are a class of salts that are expected to be used as a new source of solvents and for many other applications. Our previous studies revealed that selected ILs, structurally related organic cations, are eliminated exclusively in urine as the parent compound, partially mediated by renal transporters. This study investigated the inhibitory effects of N-butylpyridinium chloride (NBuPy-Cl) and structurally related ILs on organic cation transporters (OCTs) and multidrug and toxic extrusion transporters (MATEs) in vitro and in vivo. After Chinese hamster ovary cells expressing rat (r) OCT1, rOCT2, human (h) OCT2, hMATE1, or hMATE2-K were constructed, the ability of NBuPy-Cl, 1-methyl-3-butylimidazolium chloride (Bmim-Cl), N-butyl-N-methylpyrrolidinium chloride (BmPy-Cl), and alkyl substituted pyridinium ILs to inhibit these transporters was determined in vitro. NBuPy-Cl (0, 0.5, or 2 mg/kg per hour) was also infused into rats to assess its effect on the pharmacokinetics of metformin, a substrate of OCTs and MATEs. NBuPy-Cl, Bmim-Cl, and BmPy-Cl displayed strong inhibitory effects on these transporters (IC(50) = 0.2-8.5 μM). In addition, the inhibitory effects of alkyl-substituted pyridinium ILs on OCTs increased dramatically as the length of the alkyl chain increased. The IC(50) values were 0.1, 3.8, 14, and 671 μM (hexyl-, butyl-, and ethyl-pyridinium and pyridinium chloride) for rOCT2-mediated metformin transport. Similar structurally related inhibitory kinetics were also observed for rOCT1 and hOCT2. The in vivo coadministration study revealed that NBuPy-Cl reduced the renal clearance of metformin in rats. These results demonstrate that ILs compete with other substrates of OCTs and MATEs and could alter the in vivo pharmacokinetics of such substrates.

0 Followers
 · 
195 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A high throughput LC–MS/MS method for quantification of metformin substrate uptake enables conversion of radiometric transporter inhibition assays for multidrug and toxin extrusion transporters (MATE 1 and 2) and organic cation transporter 2 (OCT2) to a nonradioactive format. Such conversion greatly simplifies assay complexity and reduces assay costs. The development of a quantitative LC–MS/MS method for metformin in support of the high throughput transporter inhibition assays faced specific challenges of achieving both adequate chromatographic retention and rapid analytical turnaround. Here we report a method that circumvents both challenges. The utilization of a porous graphitic carbon column (Hypercarb) ensured adequate retention of highly polar metformin in biological samples. The combined employment of a ballistic gradient on a 3 mm × 30 mm, 5 μm Hypercarb column, and dual staggered chromatography coupled with multiple injection chromatography acquisition, yielded a fast injection-to-injection cycle time of 30 s. The method demonstrated good accuracy, precision and excellent robustness for high throughput applications, and has been successfully implemented in the development and validation of the nonradioactive transporter inhibition assays for MATEs and OCT2.
    Journal of Chromatography B 09/2014; 967:211-218. DOI:10.1016/j.jchromb.2014.07.024 · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation.
    ChemSusChem 02/2014; 7:336. DOI:10.1002/cssc.201300459 · 7.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organic cation transporter 2 (OCT2) is responsible for the entry step of many drugs in renal elimination, of which the changing activity may cause unwanted drug-drug interactions (DDIs). To develop drugs with favorable safety profile and provide instruction for rational clinical drug administration, it is of great interest to investigate the multiple mechanisms of OCT2 inhibition. In this study, we designed a combinatorial scheme to screen the optimum combination of pharmacophores from a pool of hypotheses established based on 162 OCT2 inhibitors. Among them, one single pharmacophore hypothesis represents a potential binding mode that may account for one unique inhibitory mechanism, and the obtained pharmacophore combination describes the multi-mechanisms of OCT2 inhibition. The final model consists of four individual pharmacophores, i.e., DHPR18, APR2, PRR5 and HHR4. Given a query ligand, it is considered as an inhibitor if it matches at least one of the hypotheses, or a non-inhibitor if it fails to match any of four hypotheses. Our combinatorial pharmacophore model performs reasonably well to discriminate inhibitors and non-inhibitors, yielding an overall accuracy around 0.70 for a test set containing 81 OCT2 inhibitors and 218 non-inhibitors. Intriguingly, we found that the number of matched hypotheses was positively correlated with inhibition rate, which coincides with the pharmacophore modeling result of P-gp substrate binding. Further analysis suggested that the hypothesis PRR5 was responsible for competitive inhibition of OCT2, and other hypotheses were important for interaction between the inhibitor and OCT2. In light of the results, a hypothetical model for inhibiting transporting mediated by OCT2 was proposed.
    Molecular Pharmaceutics 10/2013; 10(12). DOI:10.1021/mp400423g · 4.79 Impact Factor

Full-text (2 Sources)

Download
22 Downloads
Available from
May 17, 2014