High sensitive and label-free colorimetric DNA detection based on nicking endonuclease-assisted activation of DNAzymes.

The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, PR China.
Talanta (Impact Factor: 3.5). 07/2011; 85(1):91-6. DOI: 10.1016/j.talanta.2011.03.042
Source: PubMed

ABSTRACT Horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme) attracts growing interest as an amplifying label for biorecognition and biosensing events, especially for DNA detection. However, in the traditional designs, one target molecule can only generate one HRP-DNAzyme, which limits the signal enhancement and thus its sensitivity. In this article, we propose an amplified and label-free colorimetric DNA detection strategy based on nicking endonuclease (NEase)-assisted activation of HRP-DNAzymes (NEAA-DNAzymes). This new strategy relies on the hairpin-DNAzyme probe and NEase-assisted target recycling. In the hairpin-DNAzyme probe, the HRP-DNAzyme sequence is protected in a "caged" inactive structure, whereas the loop region includes the target complementary sequence. Upon hybridization with target, the beacon is opened, resulting in the activation of the HRP-DNAzyme. Meanwhile, upon formation of the duplex, the NEase recognizes a specific nucleotide sequence and cleaves the hairpin-DNAzyme probe into two fragments. After nicking, the fragments of the hairpin-DNAzyme probe spontaneously dissociate from the target DNA. Amplification is accomplished by another hairpin-DNAzyme probe hybridizing to the released intact target to continue the strand-scission cycle, which results in activation of numerous DNAzymes. The activated HRP-DNAzymes generate colorimetric or chemiluminescence readout signals, thus providing the amplified detection of DNA. The detection limit of the colorimetric method is 10 pmol/L, which are three orders of magnitude lower than that without NEase. In addition, the detection limit of the chemiluminescence method is 0.2 pmol/L. Meanwhile, this strategy also exhibits high discrimination ability even against single-base mismatch.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This review highlights various methods that can be used for a sensitive detection of nucleic acids without using thermal cycling procedures, as is done in PCR or LCR. Topics included are nucleic acid sequence-based amplification (NASBA), strand displacement amplification (SDA), loop-mediated amplification (LAMP), Invader assay, rolling circle amplification (RCA), signal mediated amplification of RNA technology (SMART), helicase-dependent amplification (HDA), recombinase polymerase amplification (RPA), nicking endonuclease signal amplification (NESA) and nicking endonuclease assisted nanoparticle activation (NENNA), exonuclease-aided target recycling, Junction or Y-probes, split DNAZyme and deoxyribozyme amplification strategies, template-directed chemical reactions that lead to amplified signals, non-covalent DNA catalytic reactions, hybridization chain reactions (HCR) and detection via the self-assembly of DNA probes to give supramolecular structures. The majority of these isothermal amplification methods can detect DNA or RNA in complex biological matrices and have great potential for use at point-of-care.
    Molecular BioSystems 03/2014; · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on nicking endonuclease (NEase)-assisted target recycling and rolling circle amplification (RCA) for in situ generation of numerous G-quadruplex/hemin complexes, we developed a new, dual amplified and ultrasensitive electrochemical biosensor for mutant human p53 gene. The target mutant DNA hybridizes with the loop portion of a dithiol-modified hairpin probe (HP) self-assembled on a gold sensing electrode and forms nicking site for the NEase, which cleaves the HP and releases the target DNA. The released target DNA again hybridizes with the intact HP and initiates the DNA recycling process with the assistance of the NEase, leading to the cleavage of a large number of the HPs and the generation of numerous primers for RCA. With rationally designed, G-quadruplex complementary sequence-encoded RCA circular template, subsequent RCA results in the formation of long DNA sequences with massive tandem-repeat G-quadruplex sequences, which further associate with hemin and generate significantly amplified current response for highly sensitive DNA detection down to 0.25fM. The developed method also exhibits high specificity for the target DNA against single-base mismatched sequence. With the ultrahigh sensitivity feature induced by the dual signal amplification, the proposed method can thus offer new opportunities for the detection of trace amounts of DNA.
    Biosensors & bioelectronics 12/2013; 55C:266-271. · 5.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis.
    Talanta 01/2014; 125:306–312. · 3.50 Impact Factor