Recent progress in cell therapy for basal ganglia disorders with emphasis on menstrual blood transplantation in stroke. Neurosci Biobehav Rev

Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Neuroscience & Biobehavioral Reviews (Impact Factor: 10.28). 05/2011; 36(1):177-90. DOI: 10.1016/j.neubiorev.2011.05.010
Source: PubMed

ABSTRACT Cerebrovascular diseases are the third leading cause of death and the primary cause of long-term disability in the United States. The only approved therapy for stroke is tPA, strongly limited by the short therapeutic window and hemorrhagic complications, therefore excluding most patients from its benefits. Parkinson's and Huntington's disease are the other two most studied basal ganglia diseases and, as stroke, have very limited treatment options. Inflammation is a key feature in central nervous system disorders and it plays a dual role, either improving injury in early phases or impairing neural survival at later stages. Stem cells can be opportunely used to modulate inflammation, abrogate cell death and, therefore, preserve neural function. We here discuss the role of stem cells as restorative treatments for basal ganglia disorders, including Parkinson's disease, Huntington's disease and stroke, with special emphasis to the recently investigated menstrual blood stem cells. We highlight the availability, proliferative capacity, pluripotentiality and angiogenic features of these cells and explore their present and future experimental and clinical applications.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.
    Human gene therapy 10/2010; 22(1):19-26. DOI:10.1089/hum.2010.197 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adipose tissue-derived mesenchymal stem cells (AdMSCs) represent an attractive and ethical cell source for stem cell therapy. With the recent demonstration of MSC homing properties, intravenous applications of MSCs to cell-damaged diseases have increased. In the present study, the toxicity and tumorigenicity of human AdMSCs (hAdMSCs) were investigated for clinical application. Culture-expanded hAdMSCs showed the typical appearance, immunophenotype, and differentiation capacity of MSCs, and were genetically stable at least 12 passages in culture. Cells suspended in physiological saline maintained their MSC properties in a cold storage condition for at least 3 days. To test the toxicity of hAdMSCs, different doses of hAdMSCs were injected intravenously into immunodeficient mice, and the mice were observed for 13 weeks. Even at the highest cell dose (2.5×10(8) cells/kg body weight), the SCID mice were viable and had no side effects. A tumorigenicity test was performed in Balb/c-nu nude mice for 26 weeks. Even at the highest cell dose (2×10(8) MSCs/kg), no evidence of tumor development was found. In a human clinical trial, 8 male patients who had suffered a spinal cord injury >12 months previous were intravenously administered autologous hAdMSCs (4×10(8) cells) one time. None of the patients developed any serious adverse events related to hAdMSC transplantation during the 3-month follow-up. In conclusion, the systemic transplantation of hAdMSCs appears to be safe and does not induce tumor development.
    Stem cells and development 02/2011; 20(8):1297-308. DOI:10.1089/scd.2010.0466 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Considerable promise has been demonstrated by cell therapy for the treatment of stroke. Adult-derived stem cells avoid the ethical dilemmas of using embryonic and fetal stem cells and thus are the ideal type of cell to study. There are a number of different types of stem cells that could prove to be useful, but there are potential concerns associated with each one. This review summarizes the current knowledge on the use of the different possible adult-derived stem cell types including their benefits and challenges. While the optimal conditions are still to be determined, these cells may prove to be at the forefront of stem cell research and ultimately therapy for stroke and other disorders.
    Progress in brain research 01/2012; 201:99-117. DOI:10.1016/B978-0-444-59544-7.00006-8 · 5.10 Impact Factor
Show more