Article

Clinicopathologic study on an ALS family with a heterozygous E478G optineurin mutation.

Department of Neurology, Kyoto University Graduate School of Medicine, Shogoin, Sakyo-ku, Japan. .
Acta Neuropathologica (Impact Factor: 9.78). 06/2011; 122(2):223-9. DOI: 10.1007/s00401-011-0842-y
Source: PubMed

ABSTRACT We investigated a family manifesting amyotrophic lateral sclerosis (ALS) with a heterozygous E478G mutation in the optineurin (OPTN) gene. Clinically, slow deterioration of motor function, mood and personality changes, temporal lobe atrophy on neuroimaging, and bizarre finger deformity were noted. Neuropathologically, TAR DNA-binding protein 43 (TDP-43)-positive neuronal intracytoplasmic inclusions were observed in the spinal and medullary motor neurons. In these cells, the immunoreactivity of nuclear TDP-43 was reduced. Consecutive sections revealed that the inclusions were also reactive with anti-ubiquitin and anti-p62 antibodies, but noticeably negative for OPTN. In addition, TDP-43/p62-positive glial cytoplasmic inclusions (GCIs) were scattered throughout the spinal cord and the medullary motor nuclei. Furthermore, Golgi fragmentation was identified in 70% of the anterior horn cells (AHCs). The presence of AHCs with preserved nuclear TDP-43 and a fragmented Golgi apparatus, which are unrecognizable in sporadic ALS, indicates that patients with the E4787G OPTN mutation would manifest Golgi fragmentation before loss of nuclear TDP-43. In the neocortex, GCIs were sparsely scattered among the primary motor and temporal cortices, but no neuronal TDP-43-positive inclusions were detected. In the amygdala and the ambient gyrus, argyrophilic grains and ballooned neurons were seen. The thorough neuropathologic investigations performed in this work demonstrated that OPTN-positive inclusion bodies, if any, were not prominent. We postulate that optineurinopathy is closely linked with TDP-proteinopathy and speculate that this heterozygous E478G mutation would cause ALS by acting through a dominant-negative mechanism.

0 Followers
 · 
153 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal TAR DNA-binding protein 43 (TDP-43) inclusion bodies can be detected in the degenerative neurons of amyotrophic lateral sclerosis. In this study, we induced chronic oxidative stress injury by applying malonate to cultured mouse cortical motor neurons. In the later stages of the malonate insult, TDP-43 expression reduced in the nuclei and transferred to the cytoplasm. This was accompanied by neuronal death, mimicking the pathological changes in TDP-43 that are seen in patients with amyotrophic lateral sclerosis. Interestingly, in the early stages of the response to malonate treatment, nuclear TDP-43 expression increased, and neurons remained relatively intact, without inclusion bodies or fragmentation. Therefore, we hypothesized that the increase of nuclear TDP-43 expression might be a pro-survival factor against oxidative stress injury. This hypothesis was confirmed by an in vitro transgenic experiment, in which overexpression of wild type mouse TDP-43 in cultured cortical motor neurons significantly reduced malonate-induced neuronal death. Our findings suggest that the loss of function of TDP-43 is an important cause of neuronal degeneration, and upregulation of nuclear TDP-43 expression might be neuroprotective in amyotrophic lateral sclerosis.
    Neural Regeneration Research 12/2013; 8(35):3284-95. DOI:10.3969/j.issn.1673-5374.2013.35.003 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in Optineurin have been associated with ALS, glaucoma, and Paget's disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
    PLoS ONE 10/2014; 9(10):e109922. DOI:10.1371/journal.pone.0109922 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fragmentation of stacked cisterns of the Golgi apparatus into dispersed smaller elements is a feature associated with degeneration of neurons in amyotrophic lateral sclerosis (ALS) and some other neurodegenerative disorders. However, the role of Golgi fragmentation in motor neuron degeneration is not well understood. Here we use a SOD1-ALS mouse model (low-copy Gurney G93A-SOD1 mouse) to show that motor neurons with Golgi fragmentation are retrogradely labeled by intramuscularly injected CTB (beta subunit of cholera toxin), indicating that Golgi fragmentation precedes neuromuscular denervation and axon retraction. We further show that Golgi fragmentation may occur in the absence of and precede two other pathological markers, i.e. somatodendritic SOD1 inclusions, and the induction of ATF3 expression. In addition, we show that Golgi fragmentation is associated with an altered dendritic organization of the Golgi apparatus, does not depend on intact apoptotic machinery, and is facilitated in transgenic mice with impaired retrograde dynein-dependent transport (BICD2-N mice). A connection to altered dynein-dependent transport also is suggested by reduced expression of endosomal markers in neurons with Golgi fragmentation, which also occurs in neurons with impaired dynein function. Together the data indicate that Golgi fragmentation is a very early event in the pathological cascade in ALS that is associated with altered organization of intracellular trafficking.
    04/2014; 2(1):38. DOI:10.1186/2051-5960-2-38