Article

Pseudomonas aeruginosa porphobilinogen synthase assembly state regulators: hit discovery and initial SAR studies.

Fox Chase Chemical Diversity Center, Inc., Pennsylvania Center for Drug Discovery, Pennsylvania Biotechnology Center, Doylestown, PA 18902 USA.
ARKIVOC : free online journal of organic chemistry / Arkat-USA, Inc 06/2010; 2010:175-188.
Source: PubMed

ABSTRACT Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of the essential heme, chlorophyll and vitamin B(12) heme pigments. PBGS activity is regulated by assembly state, with certain oligomers exhibiting biological activity and others either partially or completely inactive, affording an innovative means of allosteric drug action. Pseudomonas aeruginosa PBGS is functionally active as an octamer, and inactive as a dimer. We have identified a series of compounds that stabilize the inactive P. aeruginosa dimer by a computational prescreen followed by native PAGE gel mobility shift analysis. From those results, we have prepared related thiadiazoles and evaluated their ability to regulate P. aeruginosa PBGS assembly state.

Full-text

Available from: Eileen K Jaffe, Jun 15, 2015
0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The heme biosynthesis enzyme porphobilinogen synthase (PBGS) is a potential drug target in several human pathogens. wALADin1 benzimidazoles have emerged as species-selective PBGS inhibitors against Wolbachia endobacteria of filarial worms. In the present study, we have systematically tested wALADins against PBGS orthologs from bacteria, protozoa, metazoa, and plants to elucidate the inhibitory spectrum. However, the effect of wALADin1 on different PBGS orthologs was not limited to inhibition: several orthologs were stimulated by wALADin1; others remained unaffected. We demonstrate that wALADins allosterically modulate the PBGS homooligomeric equilibrium with inhibition mediated by favoring low-activity oligomers, while 5-aminolevulinic acid, Mg(2+), or K(+) stabilized high-activity oligomers. Pseudomonas aeruginosa PBGS could be inhibited or stimulated by wALADin1 depending on these factors and pH. We have defined the wALADin chemotypes responsible for either inhibition or stimulation, facilitating the design of tailored PBGS modulators for potential application as antimicrobial agents, herbicides, or drugs for porphyric disorders.
    Journal of Medicinal Chemistry 02/2014; 57(6). DOI:10.1021/jm401785n · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structural basis for allosteric regulation of phenylalanine hydroxylase (PAH), whose dysfunction causes phenylketonuria (PKU), is poorly understood. A new morpheein model for PAH allostery is proposed to consist of a dissociative equilibrium between two architecturally different tetramers whose interconversion requires a ∼90° rotation between the PAH catalytic and regulatory domains, the latter of which contains an ACT domain. This unprecedented model is supported by in vitro data on purified full length rat and human PAH. The conformational change is both predicted to and shown to render the tetramers chromatographically separable using ion exchange methods. One novel aspect of the activated tetramer model is an allosteric phenylalanine binding site at the inter-subunit interface of ACT domains. Amino acid ligand-stabilized ACT domain dimerization follows the multimerization and ligand binding behavior of ACT domains present in other proteins in the PDB. Spectroscopic, chromatographic, and electrophoretic methods demonstrate a PAH equilibrium consisting of two architecturally distinct tetramers as well as dimers. We postulate that PKU-associated mutations may shift the PAH quaternary structure equilibrium in favor of the low activity assemblies. Pharmacological chaperones that stabilize the ACT:ACT interface can potentially provide PKU patients with a novel small molecule therapeutic.
    Archives of Biochemistry and Biophysics 01/2013; 530(2). DOI:10.1016/j.abb.2012.12.017 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structural basis for allosteric regulation of porphobilinogen synthase (PBGS) is modulation of a quaternary structure equilibrium between octamer and hexamer (via dimers), which is represented schematically as 8mer ⇔ 2mer ⇔ 2mer∗⇔ 6mer∗. The "∗" represents a reorientation between two domains of each subunit that occurs in the dissociated state because it is sterically forbidden in the larger multimers. Allosteric effectors of PBGS are both intrinsic and extrinsic and are phylogenetically variable. In some species this equilibrium is modulated intrinsically by magnesium which binds at a site specific to the 8mer. In other species this equilibrium is modulated intrinsically by pH with the guanidinium group of an arginine being spatially equivalent to the allosteric magnesium ion. In humans, disease associated variants all shift the equilibrium toward the 6mer∗ relative to wild type. The 6mer∗ has a surface cavity that is not present in the 8mer and is proposed as a small molecule allosteric binding site. In silico and in vitro approaches have revealed species-specific allosteric PBGS inhibitors that stabilize the 6mer∗. Some of these inhibitors are drugs in clinical use leading to the hypothesis that extrinsic allosteric inhibition of human PBGS could be a mechanism for drug side effects.
    Archives of Biochemistry and Biophysics 03/2012; 519(2):144-53. DOI:10.1016/j.abb.2011.10.010 · 3.04 Impact Factor