Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels

Institut National de Santé et de Recherche Médicale (INSERM), U603, Paris, France.
Nature medicine (Impact Factor: 28.05). 06/2011; 17(7):893-8. DOI: 10.1038/nm.2394
Source: PubMed

ABSTRACT Uncovering principles that regulate energy metabolism in the brain requires mapping of partial pressure of oxygen (PO(2)) and blood flow with high spatial and temporal resolution. Using two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen probe PtP-C343, we show that PO(2) can be accurately measured in the brain at depths up to 300 μm with micron-scale resolution. In addition, 2PLM allowed simultaneous measurements of blood flow and of PO(2) in capillaries with less than one-second temporal resolution. Using this approach, we detected erythrocyte-associated transients (EATs) in oxygen in the rat olfactory bulb and showed the existence of diffusion-based arterio-venous shunts. Sensory stimulation evoked functional hyperemia, accompanied by an increase in PO(2) in capillaries and by a biphasic PO(2) response in the neuropil, consisting of an 'initial dip' and a rebound. 2PLM of PO(2) opens new avenues for studies of brain metabolism and blood flow regulation.

Download full-text


Available from: Mathieu Ducros, Jun 28, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologs within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges.
    Frontiers in Neuroscience 08/2014; 8:211. DOI:10.3389/fnins.2014.00211
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several approaches have been adopted for real-time imaging of neural activity in vivo. We tested a new cell-penetrating phosphorescent oxygen-sensitive probe, NanO2-IR, to monitor temporal and spatial dynamics of oxygen metabolism in the neocortex following peripheral sensory stimulation. Probe solution was applied to the surface of anesthetized mouse brain; optical imaging was performed using a MiCAM-02 system. Trains of whisker stimuli were delivered and associated changes in phosphorescent signal were recorded in the contralateral somatosensory ("barrel") cortex. Sensory stimulation led to changes in oxygenation of activated areas of the barrel cortex. The oxygen imaging results were compared to those produced by the voltage-sensitive dye RH-1691. While the signals emitted by the two probes differed in shape and amplitude, they both faithfully indicated specific whisker evoked cortical activity. Thus, NanO2-IR probe can be used as a tool in visualization and real- time analysis of sensory- evoked neural activity in vivo.
    Journal of neuroscience methods 04/2013; DOI:10.1016/j.jneumeth.2013.04.005 · 1.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.
    Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 01/2012; 32(7):1259-76. DOI:10.1038/jcbfm.2011.195 · 5.34 Impact Factor