Article

Acute respiratory distress syndrome and acute lung injury

Southampton University Hospital, NHS Trust, Southampton, UK.
Postgraduate medical journal (Impact Factor: 1.55). 06/2011; 87(1031):612-22. DOI: 10.1136/pgmj.2011.118398
Source: PubMed

ABSTRACT Acute respiratory distress syndrome (ARDS) is a life threatening respiratory failure due to lung injury from a variety of precipitants. Pathologically ARDS is characterised by diffuse alveolar damage, alveolar capillary leakage, and protein rich pulmonary oedema leading to the clinical manifestation of poor lung compliance, severe hypoxaemia, and bilateral infiltrates on chest radiograph. Several aetiological factors associated with the development of ARDS are identified with sepsis, pneumonia, and trauma with multiple transfusions accounting for most cases. Despite the absence of a robust diagnostic definition, extensive epidemiological investigations suggest ARDS remains a significant health burden with substantial morbidity and mortality. Improvements in outcome following ARDS over the past decade are in part due to improved strategies of mechanical ventilation and advanced support of other failing organs. Optimal treatment involves judicious fluid management, protective lung ventilation with low tidal volumes and moderate positive end expiratory pressure, multi-organ support, and treatment where possible of the underlying cause. Moreover, advances in general supportive measures such as appropriate antimicrobial therapy, early enteral nutrition, prophylaxis against venous thromboembolism and gastrointestinal ulceration are likely contributory reasons for the improved outcomes. Although therapies such as corticosteroids, nitric oxide, prostacyclins, exogenous surfactants, ketoconazole and antioxidants have shown promising clinical effects in animal models, these have failed to translate positively in human studies. Most recently, clinical trials with β2 agonists aiding alveolar fluid clearance and immunonutrition with omega-3 fatty acids have also provided disappointing results. Despite these negative studies, mortality seems to be in decline due to advances in overall patient care. Future directions of research are likely to concentrate on identifying potential biomarkers or genetic markers to facilitate diagnosis, with phenotyping of patients to predict outcome and treatment response. Pharmacotherapies remain experimental and recent advances in the modulation of inflammation and novel cellular based therapies, such as mesenchymal stem cells, may reduce lung injury and facilitate repair.

1 Follower
 · 
383 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foeniculum vulgare Mill. (fennel) is used to flavor food, in cosmetics, as an antioxidant, and to treat microbial, diabetic and common inflammation. No study to date, however, has assessed the anti-inflammatory effects of fennel in experimental models of inflammation. The aims of this study were to investigate the anti-inflammatory effects of fennel in model of lipopolysaccharide (LPS)-induced acute lung injury. Mice were randomly assigned to seven groups (n=7~10). In five groups, the mice were intraperitoneally injected with 1% Tween 80-saline (vehicle), fennel (125, 250, 500µl/kg), or dexamethasone (1 mg/kg), followed 1 h later by intratracheal instillation of LPS (1.5 mg/kg). In two groups, the mice were intraperitoneally injected with vehicle or fennel (250µl/kg), followed 1 h later by intratracheal instillation of sterile saline. Mice were sacrificed 4 h later, and bronchoalveolar lavage fluid (BALF) and lung tissues were obtained. Fennel significantly and dose-dependently reduced LDH activity and immune cell numbers in LPS treated mice. In addition fennel effectively suppressed the LPS-induced increases in the production of the inflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, with 500µl/kg fennel showing maximal reduction. Fennel also significantly and dose-dependently reduced the activity of the proinflammatory mediator matrix metalloproteinase 9 and the immune modulator nitric oxide (NO). Assessments of the involvement of the MAPK signaling pathway showed that fennel significantly decreased the LPS-induced phosphorylation of ERK. Fennel effectively blocked the inflammatory processes induced by LPS, by regulating pro-inflammatory cytokine production, transcription factors, and NO.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hesperidin (HDN), a flavanone glycoside, possesses anti-inflammatory properties and has been suggested to be able to modulate the lipopolysaccharide (LPS)-induced acute lung injury (ALI). High-mobility group box 1 (HMGB1) serves as an inflammatory cytokine when released extracellularly and is involved in the pathogenesis of diverse inflammatory disorders. The current study aimed to investigate the involvement of HMGB1 in HDN-induced immunoregulation of ALI. ALI in male BALB/c mice was induced by intranasal administration of LPS (0.5mg/kg). HDN (500mg/kg) was administered intragastrically 10days prior to LPS exposure. HDN significantly protected animals from LPS-induced ALI as evidenced by decreased elevation of the lung wet to dry weight ratio, total cells, neutrophils, macrophages, and myeloperoxidase (MPO) activity, associated with reduced lung histological damage. In the meantime, HDN pretreatment markedly inhibited the production of pro-inflammatory cytokines and chemokine, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1). Furthermore, HDN pretreatment dramatically inhibited the infiltration of macrophages and suppressed the expression and release of HMGB1 in vivo and in vitro. In addition, intranasal application of exogenous HMGB1 could result in lung injury which was also alleviated by HDN administration. These results suggest that HDN pretreatment protects mice from LPS-induced ALI via inhibiting the production of TNF-α and IL-6. Moreover, we found that HDN could inhibit the expression and release of HMGB1 via suppressing the infiltration of macrophages and production of MCP-1. Copyright © 2015. Published by Elsevier B.V.
    International Immunopharmacology 02/2015; 25(2). DOI:10.1016/j.intimp.2015.02.022 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute respiratory distress syndrome (ARDS) is a major cause of morbidity, death and cost in intensive care units. ARDS was fi rst described in 1967, and the new defi nition was determined as the Berlin defi nition in 2011 in Berlin. ARDS is a syndrome of infl ammation and increased permeability of the blood-gas barrier. Despite intensive research, treatments remain limited and supportive therapies represent the mainstay of the treatment of ARDS. This inability of therapeutic modalities largely depends on the complex pathogenesis of this syndrome with multiple overlapping signaling pathways activated depending on the type of lung injury. Today, this syndrome is still associated with a high morbidity and mortality. Animal models provide us a bridge between bench and bedside. Numerous different models have been developed in order to establish the properties of ARDS, but, to date, no single animal model that mimics all of the characteristics of ARDS in humans has been developed, and most of the existing animal models are relevant only for limited aspects of human ARDS. Furthermore, each animal model has unique features that affect responses to treatment. Therefore, when choosing an animal model of ARDS, to take into account the key feature of ARDS as a working hypothesis to be tested and then create the most appropriate model to exhibit those features is important. The goal of this review is to summarize the properties of the most commonly used experimental animal models of ARDS after mentioning briefl y the causes and pathophysiology.
    12/2014; 2(4):154-159. DOI:10.4103/2224-4018.147738