Rediscovering sperm ion channels with the patch-clamp technique

Department of Physiology, University of California San Francisco UCSF Mail Code 2140, Genentech Hall Room N272F 600 16th Street, San Francisco, CA 94158, USA.
Molecular Human Reproduction (Impact Factor: 3.48). 06/2011; 17(8):478-99. DOI: 10.1093/molehr/gar044
Source: PubMed

ABSTRACT Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca(2+) in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca(2+) and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (H(v)1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible.

Download full-text


Available from: Polina Lishko, Jul 06, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sodium fluoride (NaF), an environmental pollutant, has been tested for its impact on fertility in several species of laboratory animals. A literature demonstrated that NaF adversely affects sperm motility, morphology, capacitation, and the acrosome reaction. However, the molecular mechanisms underlying these alterations have not yet been elucidated. Therefore, present study was designed to evaluate the regulatory pathways involved in the effect of NaF on sperm function and fertilization. In this in vitro study, mouse spermatozoa were incubated with a range of concentrations (2.5, 5, and 10 mM) of NaF for 90 min in media that support in vitro fertilization. Our results showed that NaF was associated with reduced intracellular ATP generation, motility, and motion kinematics. Likewise, short-term exposure of spermatozoa to NaF significantly reduced the intracellular calcium concentration, protein kinase-A activity, and tyrosine phosphorylation of sperm proteins, which were associated with a significant decrease in the rate of capacitation and the acrosome reaction. Finally, NaF significantly reduced the fertilization and blastocyst formation during early embryonic development. On the basis of these results, we propose that NaF reduces sperm motility, capacitation, and the acrosome reaction leading to poor fertilization and suppressed embryonic development.
    Andrology 04/2015; 3(3):544-551. DOI:10.1111/andr.12006 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane lipid regulation of cell function is poorly understood. In early development, sterol efflux and the ganglioside GM1 regulate sperm acrosome exocytosis (AE) and fertilization competence through unknown mechanisms. Here, we show that sterol efflux and focal enrichment of GM1 trigger Ca(2+) influx necessary for AE through CaV2.3, whose activity has been highly controversial in sperm. Sperm lacking CaV2.3's pore-forming α1E subunit showed altered Ca(2+) responses, reduced AE, and a strong subfertility phenotype. Surprisingly, AE depended on spatiotemporal information encoded by flux through CaV2.3, not merely the presence/amplitude of Ca(2+) waves. Using studies in both sperm and voltage clamp of Xenopus oocytes, we define a molecular mechanism for GM1/CaV2.3 regulatory interaction, requiring GM1's lipid and sugar components and CaV2.3's α1E and α2δ subunits. Our results provide a mechanistic understanding of membrane lipid regulation of Ca(2+) flux and therefore Ca(2+)-dependent cellular and developmental processes such as exocytosis and fertilization.
    Developmental Cell 02/2014; 28(3):310-21. DOI:10.1016/j.devcel.2014.01.005 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Is the environmental endocrine disruptor p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) able to induce non-genomic changes in human sperm and consequently affect functional sperm parameters? p,p'-DDE promoted Ca(2+) flux into human sperm by activating CatSper channels even at doses found in human reproductive fluids, ultimately compromising sperm parameters important for fertilization. p,p'-DDE may promote non-genomic actions and interact directly with pre-existing signaling pathways, as already observed in other cell types. However, although often found in both male and female reproductive fluids, its effects on human spermatozoa function are not known. Normozoospermic sperm samples from healthy individuals were included in this study. Samples were exposed to several p,p'-DDE concentrations for 3 days at 37°C and 5% CO2 in vitro to mimic the putative continuous exposure to this toxicant in the female reproductive tract in vivo. Shorter p,p'-DDE incubation periods were also performed in order to monitor sperm rapid Ca(2+) responses. All experiments were repeated on a minimum of five sperm samples from different individuals. All healthy individuals were recruited at the Biosciences School, University of Birmingham, the Medical Research Institute, University of Dundee and in the Human Reproduction Service at University Hospitals of Coimbra. Intracellular Ca(2+) concentration ([Ca(2+)]i) was monitored by imaging single spermatozoa loaded with Oregon Green BAPTA-1AM and further whole-cell patch-clamp recordings were performed to validate our results. Sperm viability and acrosomal integrity were assessed using the LIVE/DEAD sperm vitality kit and the acrosomal content marker PSA-FITC, respectively. p,p'-DDE rapidly increased [Ca(2+)]i (P < 0.05) even at extremely low doses (1 pM and 1 nM), with magnitudes of response up to 200%, without affecting sperm viability, except after 3 days of continuous exposure to the highest concentration tested (P < 0.05). Furthermore, experiments performed in a low Ca(2+) medium demonstrated that extracellular Ca(2+) influx was responsible for this Ca(2+) increase (P < 0.01). Mibefradil and NNC 55-0396, both inhibitors of the sperm-specific CatSper channel, reversed the p,p'-DDE-induced [Ca(2+)]i rise, suggesting the participation of CatSper in this process (P < 0.05). In fact, whole-cell patch-clamp recordings confirmed CatSper as a target of p,p'-DDE action by monitoring an increase in CatSper currents of >100% (P < 0.01). Finally, acrosomal integrity was adversely affected after 2 days of exposure to p,p'-DDE concentrations, suggesting that [Ca(2+)]i rise may cause premature acrosome reaction (P < 0.05). This is an in vitro study, and caution must be taken when extrapolating the results. A novel non-genomic p,p'-DDE mechanism specific to sperm is shown in this study. p,p'-DDE was able to induce [Ca(2+)]i rise in human sperm through the opening of CatSper consequently compromising male fertility. The promiscuous nature of CatSper activation may predispose human sperm to the action of some persistent endocrine disruptors. The study was supported by both the Portuguese National Science Foundation (FCT; PEst-C/SAU/LA0001/2011) and the UK Wellcome Trust (Grant #86470). SM was supported by the Infertility Research Trust. RST is a recipient of a PhD fellowship from FCT (SFRH/BD/46002/2008). None of the authors has any conflict of interest to declare.
    Human Reproduction 09/2013; 28(12). DOI:10.1093/humrep/det372 · 4.59 Impact Factor