Article

Robot-assisted gait training for patients with hemiparesis due to stroke.

Methodist Neurological Institute, Houston, Texas, USA.
Topics in Stroke Rehabilitation (Impact Factor: 0.79). 01/2011; 18(3):269-76. DOI: 10.1310/tsr1803-269
Source: PubMed

ABSTRACT Robot-assisted devices are becoming a popular alternative to manual facilitation in stroke rehabilitation. These devices have the potential to reduce therapist burden and treatment costs; however, their effectiveness in terms of functional recovery remains in question. This pilot study compared the outcomes of a stroke rehabilitation program that incorporates robot-assisted gait training (RAGT) with a more traditional therapy program that does not. Twenty hemiparetic stroke patients were recruited at a rehabilitation hospital in Houston, Texas, and were randomly assigned to 2 groups. The control group (n = 10) received 24 1-hour sessions of conventional physical therapy, whereas the RAGT group (n = 10) received 24 1-hour sessions of conventional physical therapy combined with RAGT on a treadmill. Gait function was assessed before and after treatment by an 8-m walk test, a 3-minute walk test, and the Tinetti balance assessment. Both groups showed significant improvement in all 3 outcome measures following treatment (P < .05), but there was no difference between groups. It is concluded that RAGT may provide improvements in balance and gait comparable with conventional physical therapy. A larger multicenter trial is required to investigate the effectiveness of RAGT in hemiparetic stroke.

0 Bookmarks
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: After neurological injury, gait rehabilitation typically focuses on task oriented training with many repetitions of a particular movement. Modern rehabilitation devices, including treadmills, augment gait rehabilitation. However, they typically provide gait training only in the forward direction of walking, hence the mechanisms associated with changing direction during turning are not practiced. A regular treadmill extended with the addition of rotation around the vertical axis is a simple device that may enable the practice of turning during walking. The objective of this study was to investigate to what extent pelvis and torso rotations in the transversal plane, as well as stride lengths while walking on the proposed rotating treadmill, resemble those in over ground turning.
    Journal of NeuroEngineering and Rehabilitation 08/2014; 11(1):127. · 2.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this systematic review was to summarize the improvements in balance after robot-assisted gait training (RAGT) in stroke patients. Two databases were searched: PubMed and Web of Knowledge. The most important key words are "stroke," "RAGT," "balance," "Lokomat," and "gait trainer." Studies were included if stroke patients were involved in RAGT protocols, and balance was determined as an outcome measurement. The articles were checked for methodological quality by 2 reviewers (Cohen's κ = 0.72). Nine studies were included (7 true experimental and 2 pre-experimental studies; methodological quality score, 56%-81%). In total, 229 subacute or chronic stroke patients (70.5% male) were involved in RAGT (3 to 5 times per week, 3 to 10 weeks, 12 to 25 sessions). In 5 studies, the gait trainer was used; in 2, the Lokomat was used; in 1 study, a single-joint wearable knee orthosis was used; and in 1 study, the AutoAmbulator was used. Eight studies compared RAGT with other gait rehabilitation methods. Significant improvements (no to large effect sizes, Cohen's d = 0.01 to 3.01) in balance scores measured with the Berg Balance Scale, the Tinetti test, postural sway tests, and the Timed Up and Go test were found after RAGT. No significant differences in balance between the intervention and control groups were reported. RAGT can lead to improvements in balance in stroke patients; however, it is not clear whether the improvements are greater compared with those associated with other gait rehabilitation methods. Because a limited number of studies are available, more specific research (eg, randomized controlled trials with larger, specific populations) is necessary to draw stronger conclusions.
    Topics in Stroke Rehabilitation 21(2):87-100. · 0.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is a general assumption that pneumatic muscle-type actuators will play an important role in the development of an assistive rehabilitation robotics system. In the last decade, the development of a pneumatic muscle actuated lower-limb leg orthosis has been rather slow compared to other types of actuated leg orthoses that use AC motors, DC motors, pneumatic cylinders, linear actuators, series elastic actuators (SEA) and brushless servomotors. However, recent years have shown that the interest in this field has grown exponentially, mainly due to the demand for a more compliant and interactive human-robotics system. This paper presents a survey of existing lower-limb leg orthoses for rehabilitation, which implement pneumatic muscle-type actuators, such as McKibben artificial muscles, rubbertuators, air muscles, pneumatic artificial muscles (PAM) or pneumatic muscle actuators (PMA). It reviews all the currently existing lower-limb rehabilitation orthosis systems in terms of comparison and evaluation of the design, as well as the control scheme and strategy, with the aim of clarifying the current and on-going research in the lower-limb robotic rehabilitation field.
    Robotics. 04/2014; 3:120-148.

Full-text

Download
3 Downloads
Available from