Article

Development by environment interactions controlling tryptophan hydroxylase expression.

Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, USA.
Journal of chemical neuroanatomy (Impact Factor: 2.52). 05/2011; 41(4):219-26. DOI: 10.1016/j.jchemneu.2011.05.002
Source: PubMed

ABSTRACT Tryptophan hydroxylase is the rate-limiting enzyme in the biosynthesis of serotonin (5-hydroxytryptamine; 5-HT). Two isoforms of tryptophan hydroxylase, derived from different genes, tph1 and tph2, have been identified. The tph1 isoform is expressed in peripheral tissues, whereas tph2 is brain and neuron-specific. Recent studies suggest that tph2 expression and brain serotonin turnover are upregulated in depressed suicide patients, and drug-free depressed patients, respectively. Increased tph2 expression could result from genetic influences, early life developmental influences, adverse experience during adulthood, or interactions among these factors. Studies in rodents support the hypothesis that interactions between early life developmental influences and adverse experience during adulthood play an important role in determining tph2 expression. In this review, we highlight the evidence for the effects of adverse early life experience and stressful experience during adulthood on both tph1 and tph2 expression.

0 Followers
 · 
111 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered serotonin (5-hydroxytryptamine, 5-HT) signaling has been implicated in some developmental abnormalities of autism spectrum disorder (ASD). However, the presumed role of 5-HT in ASD raises new questions in fundamental neuroscience. Specifically, it is not clear if the current piecemeal approach to 5-HT signaling in the mammalian body is effective and whether new conceptual approaches may be required. This review briefly discusses 5-HT production and circulation in the central nervous system and outside of it, especially with regard to ASD, and proposes a more encompassing approach that questions the utility of the “neurotransmitter” concept. It then introduces the idea of a generalized 5-HT packet that may offer insights into possible links between serotonergic varicosities and blood platelets. These approaches have theoretical significance, but they are also well positioned to advance our understanding of some long-standing problems in autism research.
    International Journal of Developmental Neuroscience 12/2014; DOI:10.1016/j.ijdevneu.2014.05.009 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.
    Neuropeptides 11/2014; 49. DOI:10.1016/j.npep.2014.11.001 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.
    PLoS ONE 07/2014; 9(7):e101420. DOI:10.1371/journal.pone.0101420 · 3.53 Impact Factor

Full-text (2 Sources)

Download
54 Downloads
Available from
May 17, 2014

Matthew Hale