Article

Binding Site Prediction for Protein-Protein Interactions and Novel Motif Discovery using Re-occurring Polypeptide Sequences

School of Computer Science, Carleton University, Ottawa, ON K1S5B6, Canada.
BMC Bioinformatics (Impact Factor: 2.67). 06/2011; 12:225. DOI: 10.1186/1471-2105-12-225
Source: PubMed

ABSTRACT While there are many methods for predicting protein-protein interaction, very few can determine the specific site of interaction on each protein. Characterization of the specific sequence regions mediating interaction (binding sites) is crucial for an understanding of cellular pathways. Experimental methods often report false binding sites due to experimental limitations, while computational methods tend to require data which is not available at the proteome-scale. Here we present PIPE-Sites, a novel method of protein specific binding site prediction based on pairs of re-occurring polypeptide sequences, which have been previously shown to accurately predict protein-protein interactions. PIPE-Sites operates at high specificity and requires only the sequences of query proteins and a database of known binary interactions with no binding site data, making it applicable to binding site prediction at the proteome-scale.
PIPE-Sites was evaluated using a dataset of 265 yeast and 423 human interacting proteins pairs with experimentally-determined binding sites. We found that PIPE-Sites predictions were closer to the confirmed binding site than those of two existing binding site prediction methods based on domain-domain interactions, when applied to the same dataset. Finally, we applied PIPE-Sites to two datasets of 2347 yeast and 14,438 human novel interacting protein pairs predicted to interact with high confidence. An analysis of the predicted interaction sites revealed a number of protein subsequences which are highly re-occurring in binding sites and which may represent novel binding motifs.
PIPE-Sites is an accurate method for predicting protein binding sites and is applicable to the proteome-scale. Thus, PIPE-Sites could be useful for exhaustive analysis of protein binding patterns in whole proteomes as well as discovery of novel binding motifs. PIPE-Sites is available online at http://pipe-sites.cgmlab.org/.

0 Followers
 · 
186 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular network sustained by different types of interactions among proteins is widely manifested as the fundamental driving force of cellular operations. Many biological functions are determined by the crosstalk between proteins rather than by the characteristics of their individual components. Thus, the searches for protein partners in global networks are imperative when attempting to address the principles of biology. We have developed a web-based tool "Sequence-based Protein Partners Search" (SPPS) to explore interacting partners of proteins, by searching over a large repertoire of proteins across many species. SPPS provides a database containing more than 60,000 protein sequences with annotations and a protein-partner search engine in two modes (Single Query and Multiple Query). Two interacting proteins of human FBXO6 protein have been found using the service in the study. In addition, users can refine potential protein partner hits by using annotations and possible interactive network in the SPPS web server. SPPS provides a new type of tool to facilitate the identification of direct or indirect protein partners which may guide scientists on the investigation of new signaling pathways. The SPPS server is available to the public at http://mdl.shsmu.edu.cn/SPPS/.
    PLoS ONE 01/2012; 7(1):e30938. DOI:10.1371/journal.pone.0030938 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.
    PLoS ONE 01/2014; 9(1):e87248. DOI:10.1371/journal.pone.0087248 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are the bricks and mortar of cells, playing structural and functional roles. In order to perform their function, they interact with each other as well as with other biomolecules such as DNA or RNA. Therefore, to fathom the function of a protein, we require knowing its partners and the atomic details of its interactions (i.e., the structure of the complex). However, the amount of protein interactions with an experimentally determined three-dimensional structure is scarce. Therefore, computational techniques such as homology modeling are foremost to fill this gap. Protein interactions can be modeled using as templates the interactions of homologous proteins, if the structure of the complex is known, or using docking methods. In both approaches, the estimation of the quality of models is essential. There are several ways to address this problem. In this review, we focus on the use of knowledge-based potentials for the analysis of protein interactions. We describe the procedure to derive statistical potentials and split them into different energetic terms that can be used for different purposes. We extensively discuss the fields where knowledge-based potentials have been successfully applied to (1) model protein-protein, protein-DNA, and protein-RNA interactions and (2) predict binding sites (in the protein and in the DNA). Moreover, we provide ready-to-use resources for docking and benchmarking protein interactions.
    Advances in Protein Chemistry and Structural Biology 01/2014; 94:77-120. DOI:10.1016/B978-0-12-800168-4.00004-4 · 3.74 Impact Factor

Full-text (2 Sources)

Download
63 Downloads
Available from
Jun 5, 2014