Article

Aberrant NF-KappaB Expression in Autism Spectrum Condition: A Mechanism for Neuroinflammation

Bute Medical School, University of St. Andrews Fife, Scotland, UK.
Frontiers in Psychiatry 01/2011; 2(3):27. DOI: 10.3389/fpsyt.2011.00027
Source: PubMed

ABSTRACT Autism spectrum condition (ASC) is recognized as having an inflammatory component. Post-mortem brain samples from patients with ASC display neuroglial activation and inflammatory markers in cerebrospinal fluid, although little is known about the underlying molecular mechanisms. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein found in almost all cell types and mediates regulation of immune response by inducing the expression of inflammatory cytokines and chemokines, establishing a feedback mechanism that can produce chronic or excessive inflammation. This article describes immunodetection and immunofluorescence measurements of NF-κB in human post-mortem samples of orbitofrontal cortex tissue donated to two independent centers: London Brain Bank, Kings College London, UK (ASC: n = 3, controls: n = 4) and Autism Tissue Program, Harvard Brain Bank, USA (ASC: n = 6, controls: n = 5). The hypothesis was that concentrations of NF-κB would be elevated, especially in activated microglia in ASC, and pH would be concomitantly reduced (i.e., acidification). Neurons, astrocytes, and microglia all demonstrated increased extranuclear and nuclear translocated NF-κB p65 expression in brain tissue from ASC donors relative to samples from matched controls. These between-groups differences were increased in astrocytes and microglia relative to neurons, but particularly pronounced for highly mature microglia. Measurement of pH in homogenized samples demonstrated a 0.98-unit difference in means and a strong (F = 98.3; p = 0.00018) linear relationship to the expression of nuclear translocated NF-κB in mature microglia. Acridine orange staining localized pH reductions to lysosomal compartments. In summary, NF-κB is aberrantly expressed in orbitofrontal cortex in patients with ASC, as part of a putative molecular cascade leading to inflammation, especially of resident immune cells in brain regions associated with the behavioral and clinical symptoms of ASC.

0 Followers
 · 
137 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism is a disorder of neurobiological origin characterized by problems in communication and social skills and repetitive behavior. After more than six decades of research, the etiology of autism remains unknown, and no biomarkers have been proven to be characteristic of autism. A number of studies have shown that the cytokine levels in the blood, brain, and cerebrospinal fluid (CSF) of autistic subjects differ from that of healthy individuals; for example, a series of studies suggests that interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) are significantly elevated in different tissues in autistic subjects. However, the expression of some cytokines, such as IL-1, IL-2, transforming growth factor-β (TGF-β), and granulocyte-macrophage colony-stimulating factor (GM-CSF), is controversial, and different studies have found various results in different tissues. In this review, we focused on several types of proinflammatory and anti-inflammatory cytokines that might affect different cell signal pathways and play a role in the pathophysiological mechanism of autistic spectrum disorders.
    Mediators of Inflammation 02/2015; 2015:531518. DOI:10.1155/2015/531518 · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental disorders that are defined solely on the basis of behavioral observations. Therefore, ASD has traditionally been framed as a behavioral disorder. However, evidence is accumulating that ASD is characterized by certain physiological abnormalities, including oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation. While these abnormalities have been reported in studies that have examined peripheral biomarkers such as blood and urine, more recent studies have also reported these abnormalities in brain tissue derived from individuals diagnosed with ASD as compared to brain tissue derived from control individuals. A majority of these brain tissue studies have been published since 2010. The brain regions found to contain these physiological abnormalities in individuals with ASD are involved in speech and auditory processing, social behavior, memory, and sensory and motor coordination. This manuscript examines the evidence linking oxidative stress, mitochondrial dysfunction and immune dysregulation/inflammation in the brain of ASD individuals, suggesting that ASD has a clear biological basis with features of known medical disorders. This understanding may lead to new testing and treatment strategies in individuals with ASD.
    Frontiers in Physiology 04/2014; 5:150. DOI:10.3389/fphys.2014.00150
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent genome-wide association studies (GWAS) have made substantial progress in identifying disease loci. The next logical step is to design functional experiments to identify disease mechanisms. This step, however, is often hampered by the large size of loci identified in GWAS that is caused by linkage disequilibrium between SNPs. In this study, we demonstrate how integrating methylome-wide association study (MWAS) results with GWAS findings can narrow down the location for a subset of the putative casual sites. We use the disease schizophrenia as an example. To handle "data analytic" variation, we first combined our MWAS results with two GWAS meta-analyses (N = 32,143 and 21,953), that had largely overlapping samples but different data analysis pipelines, separately. Permutation tests showed significant overlapping association signals between GWAS and MWAS findings. This significant overlap justified prioritizing loci based on the concordance principle. To further ensure that the methylation signal was not driven by chance, we successfully replicated the top three methylation findings near genes SDCCAG8, CREB1 and ATXN7 in an independent sample using targeted pyrosequencing. In contrast to the SNPs in the selected region, the methylation sites were largely uncorrelated explaining why the methylation signals implicated much smaller regions (median size 78 bp). The refined loci showed considerable enrichment of genomic elements of possible functional importance and suggested specific hypotheses about schizophrenia etiology. Several hypotheses involved possible variation in transcription factor-binding efficiencies.
    Human Genetics 10/2014; DOI:10.1007/s00439-014-1494-5 · 4.52 Impact Factor

Full-text (2 Sources)

Download
60 Downloads
Available from
May 23, 2014