Transit Defect of Potassium-Chloride Co-transporter 3 Is a Major Pathogenic Mechanism in Hereditary Motor and Sensory Neuropathy with Agenesis of the Corpus Callosum

Centre of Excellence in Neuromics, University of Montreal, Centre Hospitalier de l'Université de Montréal-Research Center, Montreal, Quebec H2L 4M1, Canada.
Journal of Biological Chemistry (Impact Factor: 4.6). 06/2011; 286(32):28456-65. DOI: 10.1074/jbc.M111.226894
Source: PubMed

ABSTRACT Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C → T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C → T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The homologous genes encoding the electroneutral solute carrier family 12A (SLC12A) were identified more than 20 years ago, however, over the last few years, it has become clear that each of the genes within this family potentially encode for more than one cation-chloride cotransporter (CCC). Even more surprising, despite more than 30 years of functional studies and a wealth of knowledge on the activators, inhibitors, ion affinities, and kinetics of these cotransporters, we still cannot sufficiently explain why some cells express only one CCC isoform, while others express two, three, or more CCC isoforms. In 2009, Drs. Alvarez-Leefmans and Di Fulvio published an extensive in silico molecular analysis of the potential splice variants of the Na(+)-dependent cation-chloride cotransporters. In this review, we will look at the exceptionally large variety of potential splice variants within the Na(+)-independent cation-chloride cotransporter (SLC12A4-SLC12A7) genes, their initial tissue identification, and their physiological relevance. © 2014 S. Karger AG, Basel.
    Cellular Physiology and Biochemistry 01/2013; 32(7):14-31. DOI:10.1159/000356621 · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary sensory and autonomic neuropathy type 2 (HSNAII) is a rare pathology characterized by an early onset of severe sensory loss (all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon "HSN2" of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase. While this kinase is well studied in the kidneys, little is known about its role in the nervous system. We hypothesized that the truncating mutations present in the neural-specific HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. To investigate the mechanisms by which the loss of WNK1/HSN2 isoform function causes HSANII, we used the embryonic zebrafish model and observed strong expression of WNK1/HSN2 in neuromasts of the peripheral lateral line (PLL) system by immunohistochemistry. Knocking down wnk1/hsn2 in embryos using antisense morpholino oligonucleotides led to improper PLL development. We then investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride cotransporter KCC2, as this transporter is a target of WNK1 phosphorylation. In situ hybridization revealed kcc2 expression in mature neuromasts of the PLL and semi-quantitative RT-PCR of wnk1/hsn2 knockdown embryos showed an increased expression of kcc2 mRNA. Furthermore, overexpression of human KCC2 mRNA in embryos replicated the wnk1/hsn2 knockdown phenotype. We validated these results by obtaining double knockdown embryos, both for wnk1/hsn2 and kcc2, which alleviated the PLL defects. Interestingly, overexpression of inactive mutant KCC2-C568A, which does not extrude ions, allowed a phenocopy of the PLL defects. These results suggest a pathway in which WNK1/HSN2 interacts with KCC2, producing a novel regulation of its transcription independent of KCC2's activation, where a loss-of-function mutation in WNK1 induces an overexpression of KCC2 and hinders proper peripheral sensory nerve development, a hallmark of HSANII.
    PLoS Genetics 01/2013; 9(1):e1003124. DOI:10.1371/journal.pgen.1003124 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SLC12 family encodes electroneutral cation-coupled chloride cotransporters that are critical for several physiological processes including cell volume regulation, modulation of intraneuronal chloride concentration, transepithelial ion movement, and blood pressure regulation. Members of this family are the targets of the most commonly used diuretic drugs, have been shown to be the causative genes for inherited disease such as Gitelman, Bartter and Andermann syndromes, and potentially play a role in polygenic complex diseases like arterial hypertension, epilepsy, osteoporosis, and cancer.
    Molecular Aspects of Medicine 04/2013; 34(2-3):288-298. DOI:10.1016/j.mam.2012.05.002 · 10.30 Impact Factor