Article

Normal fur development and sebum production depends on fatty acid 2-hydroxylase expression in sebaceous glands.

Institute of Biochemistry and Molecular Biology, Germany.
Journal of Biological Chemistry (Impact Factor: 4.65). 05/2011; 286(29):25922-34. DOI:10.1074/jbc.M111.231977
Source: PubMed

ABSTRACT 2-Hydroxylated fatty acid (HFA)-containing sphingolipids are abundant in mammalian skin and are believed to play a role in the formation of the epidermal barrier. Fatty acid 2-hydroxylase (FA2H), required for the synthesis of 2-hydroxylated sphingolipids in various organs, is highly expressed in skin, and previous in vitro studies demonstrated its role in the synthesis of HFA sphingolipids in human keratinocytes. Unexpectedly, however, mice deficient in FA2H did not show significant changes in their epidermal HFA sphingolipids. Expression of FA2H in murine skin was restricted to the sebaceous glands, where it was required for synthesis of 2-hydroxylated glucosylceramide and a fraction of type II wax diesters. Absence of FA2H resulted in hyperproliferation of sebocytes and enlarged sebaceous glands during hair follicle morphogenesis and anagen (active growth phase) in adult mice. This was accompanied by a significant up-regulation of the epidermal growth factor receptor ligand epigen in sebocytes. Loss of FA2H significantly altered the composition and physicochemical properties of sebum, which often blocked the hair canal, apparently causing a delay in the hair fiber exit. Furthermore, mice lacking FA2H displayed a cycling alopecia with hair loss in telogen. These results underline the importance of the sebaceous glands and suggest a role of specific sebaceous gland or sebum lipids, synthesized by FA2H, in the hair follicle homeostasis.

0 0
 · 
0 Bookmarks
 · 
80 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The furs of mammals have varied and complex functions. Other than for thermoregulation, fur is involved in physical protection, sensory input, waterproofing and colouration, the latter being important for crypsis or camouflage. Some of these diverse functions potentially conflict. We have investigated how variation in cryptic colouration and thermal features may interact in the coats of mammals and influence potential heat inflows from solar radiation, much of which is outside the visible spectral range. The coats of the polar bear (Ursus maritimus) and the marsupial koala (Phascolarctus cinereus) have insulative similarities but, while they feature cryptic colouration, they are of contrasting colour, i.e. whitish and dark grey. The reflectance of solar radiation by coats was measured across the full solar spectrum using a spectroradiometer. The modulation of incident solar radiation and resultant heat flows in these coats were determined at a range of wind speeds by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectral distribution of radiation similar to the solar spectrum was used as a proxy for the sun. Crypsis by colour matching was apparent within the visible spectrum for the two species, U. maritimus being matched against snow and P. cinereus against Eucalyptus forest foliage. While reflectances across the full solar spectrum differed markedly, that of U. maritimus being 66 % as opposed to 10 % for P. cinereus, the heat influxes from solar radiation reaching the skin were similar. For both coats at low wind speed (1 m s(-1)), 19 % of incident solar radiation impacted as heat at the skin surface; at higher wind speed (10 m s(-1)) this decreased to approximately 10 %. Ursus maritimus and P. cinereus have high and comparable levels of fur insulation and although the patterns of reflectance and depths of penetrance of solar radiation differ for the coats, the considerable insulation limited the radiant heat reaching the skin. These data suggest that generally, if mammal coats have high insulation then heat flow from solar radiation into an animal is much restricted and the impact of coat colour is negligible. However, comparisons with published data from other species suggest that as fur insulation decreases, colour increasingly influences the heat inflow associated with solar radiation.
    Journal of Comparative Physiology B 12/2013; · 2.02 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis.
    Experimental Cell Research 11/2012; · 3.56 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Epigen is the latest addition to the mammalian family of EGFR ligands. Epigen was initially identified as a novel expressed sequence tag with homology to the EGF family by high throughput sequencing of a mouse keratinocyte complementary DNA library, and received its name for its ability to act as an epithelial mitogen. In vitro studies attributed to epigen several unique features, such as persistent and potent biological actions involving low affinity receptor binding, as well as sub-maximal receptor activation and inactivation. Similarly to the other EGFR ligands, the expression of epigen is up-regulated by hormones and in certain cancer types. While the biological functions of epigen remain to be uncovered, it appears to play a role in epidermal structures, such as the mammary gland and the sebaceous gland. The latter organ, in particular, was greatly enlarged in transgenic mice overexpressing epigen. Interestingly, mice lacking epigen develop and grow normally, probably due to functional compensation by other EGFR ligands. Future studies are likely to reveal the biological roles of the unique receptor binding properties of epigen, as well as its potential harnessing during disease.
    Seminars in Cell and Developmental Biology 12/2013; · 6.20 Impact Factor