Epithelial transition zones: Merging microenvironments, niches, and cellular transformation

Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
European journal of dermatology: EJD (Impact Factor: 1.99). 05/2011; 21 Suppl 2(Suppl 2):21-8. DOI: 10.1684/ejd.2011.1267
Source: PubMed

ABSTRACT Transition zones (TZs) are regions in the body where two different types of epithelial tissue meet resulting in the appearance of a distinct abrupt transition. These TZs are found in numerous locations within the body, including the cornea-conjunctiva junction, esophagogastric junction, gastro-duodenal junction, endo-ectocervix junction, ileocecal junction, and anorectal junction. Several of these TZs are often associated with the development of cancer, in some cases due to viral transformation by the human papilloma virus (HPV). The underlying molecular and cellular basis for this tumor susceptibiblity is unknown. The distinct epithelial morphology and location results in unique properties being conferred upon this epithelial tissue, as different signaling cues and cell surface markers are apparent. Importantly, the natural state of TZs closely resembles that of a pre-lesional epithelium, as several proteins that are induced during wounding are expressed specifically within this region, which may contribute to transformation. This region may also act as a stem cell niche, and as such, represents a key location for cellular transformation by accumulated genetic mutations or viral transformation resulting in tumor formation.

Download full-text


Available from: Adrian J McNairn, Sep 27, 2015
238 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are more microorganisms that colonize the human body than resident cells; some are commensal whereas others are pathogenic. Pathogenic microorganisms are sensed by the innate or adaptive immune system, an immune response is initiated, and the infection is often cleared. Some microorganisms have developed strategies to evade immune defenses, ensuring their long-term survival with potentially devastating consequences for the host. Approximately 18% of all cancers can be attributed to infective agents; the most common being Helicobacter pylori, Human papilloma virus (HPV) and Hepatitis B and C virus in causing stomach, cervical and liver carcinoma, respectively. This review focuses on whether HPV infection is necessary for initiating pterygia, a common benign condition and ocular-surface squamous neoplasia (OSSN), a rare disease with metastatic potential. The search engine PubMed was used to identify articles from the literature related to HPV and pterygium or conjunctival neoplasia. From 34 investigations that studied HPV in pterygia and OSSN, a prevalence rate of 18.6% (136/731) and 33.8% (144/426), respectively, was recorded. The variation in HPV prevalence (0-100%) for both disease groups may have arisen from study-design faults and the techniques used to identify the virus. Overall, the data suggest that HPV is not necessary for initiating either condition but may be a co-factor in susceptible hosts. Currently, over 60 million people worldwide have been immunized with HPV vaccines, but any effect on pterygium and OSSN development may not be known for some time as these lesions can evolve over decades or occur in older individuals.
    Eye (London, England) 12/2011; 26(2):202-11. DOI:10.1038/eye.2011.312 · 2.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cornea contains a reservoir of self-regenerating epithelial cells that are essential for maintaining its transparency and good vision. The study of stem cells in this functionally important organ has grown over the past four decades, partly due to the ease with which this tissue is visualized, its accessibility with minimally invasive instruments, and the fact that its stem cells are segregated within a transitional zone between two functionally diverse epithelia. While human, animal, and ex vivo models have been instrumental in progressing the corneal stem cell field, there is still much to be discovered about this exquisitely sensitive window for sight. This review will provide an overview of the human cornea, where its stem cells reside and how components of the microenvironment including extracellular matrix proteins and their integrin receptors are thought to govern corneal stem cell homeostasis.
    Stem Cells 02/2012; 30(2):100-7. DOI:10.1002/stem.794 · 6.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Millions worldwide have visual impairments caused by dysfunctional eye components, including cornea, lens, retina, and optic nerve, or the visual cortex in the brain. Insufficient cornea donation and inherent artificial lens problems demand alternative treatment strategies for cornea diseases and cataracts, whereas retinal degenerative diseases, including glaucoma, macular degeneration, and retinitis pigmentosa, still lack effective treatments. Stem cells have been investigated for their potential in various eye-specific pathologies to replace lost retinal ganglion cells and photoreceptors in retinal degenerative diseases and toward engineering transplantable patient-specific cornea or lens. Many stem cell types, including putative resident eye stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, have been investigated for their potential to generate specific cell types in the eye in culture and after transplantation and to engineer eye tissues in combination with structural scaffolds. Cultured stem cells and in vitro differentiated eye-specific cells are transplanted into different locations of the eye to test their ability to produce functional cells for supporting eye functions. In addition, stem cells have been directly tested in vitro for their capacity to engineer eye-specific tissues. Different stem cell types have been shown to have distinct capacities to produce eye-specific cells or even the entire retina. Stem cells offer great hope for treating various eye pathologies. Despite recent progress, many challenges must still be overcome before the era of stem cell-based therapy in the eye truly arrives.
    03/2013; 2(2):111-118. DOI:10.1097/APO.0b013e31828615b7
Show more