Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows.

Department of Animal and Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
Microbial Ecology (Impact Factor: 3.12). 05/2011; 62(1):94-105. DOI: 10.1007/s00248-011-9881-0
Source: PubMed

ABSTRACT Non-lactating dairy cattle were transitioned to a high-concentrate diet to investigate the effect of ruminal pH suppression, commonly found in dairy cattle, on the density, diversity, and community structure of rumen methanogens, as well as the density of rumen protozoa. Four ruminally cannulated cows were fed a hay diet and transitioned to a 65% grain and 35% hay diet. The cattle were maintained on an high-concentrate diet for 3 weeks before the transition back to an hay diet, which was fed for an additional 3 weeks. Rumen fluid and solids and fecal samples were obtained prior to feeding during weeks 0 (hay), 1, and 3 (high-concentrate), and 4 and 6 (hay). Subacute ruminal acidosis was induced during week 1. During week 3 of the experiment, there was a significant increase in the number of protozoa present in the rumen fluid (P=0.049) and rumen solids (P=0.004), and a significant reduction in protozoa in the rumen fluid in week 6 (P=0.003). No significant effect of diet on density of rumen methanogens was found in any samples, as determined by real-time PCR. Clone libraries were constructed for weeks 0, 3, and 6, and the methanogen diversity of week 3 was found to differ from week 6. Week 3 was also found to have a significantly altered methanogen community structure, compared to the other weeks. Twenty-two unique 16S rRNA phylotypes were identified, three of which were found only during high-concentrate feeding, three were found during both phases of hay feeding, and seven were found in all three clone libraries. The genus Methanobrevibacter comprised 99% of the clones present. The rumen fluid at weeks 0, 3, and 6 of all the animals was found to contain a type A protozoal population. Ultimately, high-concentrate feeding did not significantly affect the density of rumen methanogens, but did alter methanogen diversity and community structure, as well as protozoal density within the rumen of nonlactating dairy cattle. Therefore, it may be necessary to monitor the rumen methanogen and protozoal communities of dairy cattle susceptible to depressed pH when methane abatement strategies are being investigated.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to determine the effects of replacing grass silage (GS) with corn silage (CS) in dairy cow diets on enteric methane (CH4) production, rumen volatile fatty acid (FA) concentrations, and milk FA composition. A completely randomized block design experiment was conducted with 32 multiparous lactating Holstein-Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of 80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and 33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of ad libitum DM intake) to avoid confounding effects of DM intake on CH4 production. Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and energy balance, and CH4 production were measured during a 5-d period in climate respiration chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) were not affected by increasing CS inclusion, whereas milk protein content increased quadratically. Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of butyrate, which increased linearly. Methane production (expressed as grams per day, grams per kilogram of fat- and protein-corrected milk, and as a percent of gross energy intake) decreased quadratically with increasing CS inclusion, and decreased linearly when expressed as grams of CH4 per kilogram of DM intake. In comparison with 100% GS, CH4 production was 11 and 8% reduced for the 100% CS diet when expressed per unit of DM intake and per unit fat- and protein-corrected milk, respectively. Nitrogen efficiency increased linearly with increased inclusion of CS. The concentration of trans C18:1 FA, C18:1 cis-12, and total CLA increased quadratically, and iso C16:0, C18:1 cis-13, and C18:2n-6 increased linearly, whereas the concentration of C15:0, iso C15:0, C17:0, and C18:3n-3 decreased linearly with increasing inclusion of CS. No differences were found in short- and medium-straight, even-chain FA concentrations, with the exception of C4:0 which increased linearly with increased inclusion of CS. Replacing GS with CS in a common forage-based diet for dairy cattle offers an effective strategy to decrease enteric CH4 production without negatively affecting dairy cow performance, although a critical level of starch in the diet seems to be needed. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
    Journal of Dairy Science 01/2015; 98(3). DOI:10.3168/jds.2014-8552
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quantification of archaeol, a methanogen membrane lipid, may provide an alternative method to estimate methanogen abundance. The focus of this study was to determine the location of methanogens in the ruminant digestive tract using this biomarker. Archaeol was quantified in samples obtained from four lactating cows with rumen cannulae that grazed on either white clover (WC) or perennial ryegrass (PRG) in a changeover design study with three 3-week periods. Faeces were collected over the final 5 d of each period and total rumen contents (TRC) were obtained on the final 2 days (day 1: 9 am; day 2: 3 pm). Solid-associated microbes (SAM) and liquid-associated microbes (LAM) were also isolated from the TRC. Concentrations of archaeol in the TRC showed a significant diet by time interaction, which may be related to diurnal grazing patterns and different rumen conditions associated with PRG or WC diets. There was significantly more archaeol associated with SAM than LAM, which may reflect difficulties of methanogen proliferation in the liquid phase. Faeces had higher concentrations of archaeol than SAM and LAM which was unexpected, although, losses of methanogens may have occurred during isolation (i.e. attachment to protozoa and very small particles), or the methanogens associated with SAM may have been underestimated. There was no significant relationship between faecal and TRC archaeol concentrations. Finally, there was a significant positive relationship between rumen pH and concentrations of archaeol in SAM and LAM, which may be caused by pH and/or WC diet effects. In conclusion, archaeol is potentially a useful alternative marker for determining the abundance of methanogens in the ruminant digestive tract. This work has also highlighted the difficulties associated with methanogen quantification from microbial isolates, and the need for more representative rumen sampling in future studies.
    Livestock Science 03/2014; 164. DOI:10.1016/j.livsci.2014.02.020
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methane produced by the methanogenic Archaea that inhabit the rumen is a potent greenhouse gas and represents an energy loss for the animal. Although several strategies have been proposed to mitigate enteric CH4 production, little is known about the effects of dietary changes on the microbial consortia involved in ruminal methanogenesis. Thus, the current study aimed to examine how the metabolically active microbes are affected when dairy cows were fed diets with increasing proportions of corn silage (CS). For this purpose, 9 ruminally cannulated lactating dairy cows were used in a replicated 3 × 3 Latin square design and fed a total mixed ration (60:40 forage:concentrate ratio on a dry matter basis) with the forage portion being either alfalfa silage (0% CS), corn silage (100% CS), or a 50:50 mixture (50% CS). Enteric CH4 production was determined using respiration chambers and total rumen content was sampled for the determination of fermentation characteristics and molecular biology analyses (cDNA-based length heterogeneity PCR, quantitative PCR). The cDNA-based length heterogeneity PCR targeting active microbes revealed similar bacterial communities in cows fed 0% CS and 50% CS diets, whereas important differences were observed between 0% CS and 100% CS diets, including a reduction in the bacterial richness and diversity in cows fed 100% CS diet. As revealed by quantitative PCR, feeding the 100% CS diet increased the number of total bacteria, Prevotella spp., Archaea, and methanogenic activity, though it reduced protozoal number. Meanwhile, increasing the CS proportion in the diet increased propionate concentration but decreased ruminal pH, CH4 production (L/kg of dry matter intake), and concentrations of acetate and butyrate. Based on these microbial and fermentation changes, and because CH4 production was reduced by feeding 100% CS diet, this study shows that the use of cDNA-based quantitative PCR to estimate archaeal growth and activity is not reliable enough to reflect changes in ruminal methanogenesis. A more robust technique to characterize changes in archaeal community structures will help to better understand the microbial process involved in ruminal methanogenesis and, hence, enabling the development of more effective dietary CH4 mitigation strategies.
    Journal of Dairy Science 06/2013; 96(8). DOI:10.3168/jds.2012-6481