Influence of stereochemistry on proton transfer in protonated tripeptide models

Faculty of Science - National Centre for Biomolecular Research, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
Journal of Molecular Modeling (Impact Factor: 1.74). 05/2011; 18(3):871-9. DOI: 10.1007/s00894-011-1116-2
Source: PubMed


Vectorial proton transfer among carbonyl oxygen atoms was studied in two models of tripeptide via quantum chemical calculations using the hybrid B3LYP functional and the 6-31++G basis set. Two principal proton transfer pathways were found: a first path involving isomerization of the proton around the double bond of the carbonyl group, and a second based on the large conformational flexibility of the tripeptide model where all carbonyl oxygen atoms cooperate. The latter pathway has a rate-determining step energy barrier that is only around half of that for the first pathway. As conformational flexibility plays a crucial role in second pathway, the effect of attaching methyl groups to the alpha carbon atoms was studied. The results obtained are presented for all four possible stereochemical configurations.

44 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantum chemical and RRKM calculations were carried out on protonated glycylglycine in order to determine the atomic details of the main fragmentation pathways leading to formation of a1 and y1 ions. Two possible mechanisms were considered. The first path results in elimination of aziridinone as a neutral counterpart of the y1 ion formed. Our calculations show that this pathway has a relatively high threshold energy (48.6 kcal/mol) and the corresponding unimolecular rate constants are quite small even at large internal energy. An alternative pathway (a1-y1) proposed in the present paper seems, however, to be favored against the above 'aziridinone' one from the points of view of both energetics and kinetics. The 'a1-y1' pathway leads to simultaneous formation of a1 and y1 ions, the ratio of which depends on the energy distribution of the fragmenting species for a particular dipeptide. However, even if y1 ions are formed via the 'a1-y1' pathway, the corresponding neutrals eliminated do not have a strained cyclic aziridinone structure. Instead, in a two-step process, CO and NHCH2 are formed leading to neutral products energetically more favored than aziridinone. The available experimental data reevaluated in the present paper lend support to the 'a1-y1' pathway.
    Rapid Communications in Mass Spectrometry 02/2001; 15(8):651-63. DOI:10.1002/rcm.273 · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proton migration in protonated glycylglycylglycine (GGG) has been investigated by using density functional theory at the B3LYP/6-31++G(d,p) level of theory. On the protonated GGG energy hypersurface 19 critical points have been characterized, 11 as minima and 8 as first-order saddle points. Transition state structures for interconversion between eight of these minima are reported, starting from a structure in which there is protonation at the amino nitrogen of the N-terminal glycyl residue following the migration of the proton until there is fragmentation into protonated 2-aminomethyl-5-oxazolone (the b(2) ion) and glycine. Individual free energy barriers are small, ranging from 4.3 to 18.1 kcal mol(-)(1). The most favorable site of protonation on GGG is the carbonyl oxygen of the N-terminal residue. This isomer is stabilized by a hydrogen bond of the type O-H.N with the N-terminal nitrogen atom, resulting in a compact five-membered ring. Another oxygen-protonated isomer with hydrogen bonding of the type O-H.O, resulting in a seven-membered ring, is only 0.1 kcal mol(-)(1) higher in free energy. Protonation on the N-terminal nitrogen atom produces an isomer that is about 1 kcal mol(-)(1) higher in free energy than isomers resulting from protonation on the carbonyl oxygen of the N-terminal residue. The calculated energy barrier to generate the b(2) ion from protonated GGG is 32.5 kcal mol(-)(1) via TS(6-->7). The calculated basicity and proton affinity of GGG from our results are 216.3 and 223.8 kcal mol(-)(1), respectively. These values are 3-4 kcal mol(-)(1) lower than those from previous calculations and are in excellent agreement with recently revised experimental values.
    Journal of the American Chemical Society 05/2001; 123(13):3006-12. DOI:10.1021/ja0015904 · 12.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study presents quantum-chemical calculations on proton transfer in protonated N-acetylglycyl-N1-methylglycinamide (AGA) as a short oligopeptide model. All calculations employ the B3LYP functional and the 6-31++G** basis set. Two different mechanisms of proton transfer are discussed. The rate-determining step of the first mechanism exhibits an energy barrier of about 17.7 kcal mol-1, and it is represented by an isomerization of the proton around the double bond of the carbonyl group. The second mechanism is based on the large conformational flexibility of AGA, where all carbonyl oxygens cooperate. The rate-determining step of this mechanism exhibits an energy barrier of only 8.3 kcal mol-1.
    Journal of the American Chemical Society 12/2003; 125(45):13678-9. DOI:10.1021/ja035800z · 12.11 Impact Factor
Show more