Loss of the chromatin regulator MRG15 limits neural stem/progenitor cell proliferation via increased expression of the p21 Cdk inhibitor.

Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA.
Stem Cell Research (Impact Factor: 3.91). 07/2011; 7(1):75-88. DOI: 10.1016/j.scr.2011.04.002
Source: PubMed

ABSTRACT Chromatin regulation is crucial for many biological processes such as transcriptional regulation, DNA replication, and DNA damage repair. We have found that it is also important for neural stem/progenitor cell (NSC) function and neurogenesis. Here, we demonstrate that expression of the cyclin-dependent kinase inhibitor p21 is specifically up-regulated in Mrg15 deficient NSCs. Knockdown of p21 expression by p21 shRNA results in restoration of cell proliferation. This indicates that p21 is directly involved in the growth defects observed in Mrg15 deficient NSCs. Activated p53 accumulates in Mrg15 deficient NSCs and this most likely accounts for the up-regulation of p21 expression in the cells. We observed decreased p53 and p21 levels and a concomitant increase in the percentage of BrdU positive cells in Mrg15 null cultures following expression of p53 shRNA. DNA damage foci, as indicated by immunostaining for γH2AX and 53BP1, are detectable in a sub-population of Mrg15 deficient NSC cultures under normal growing conditions and the majority of p21-positive cells are also positive for 53BP1 foci. Furthermore, Mrg15 deficient NSCs exhibit severe defects in DNA damage response following ionizing radiation. Our observations highlight the importance of chromatin regulation and DNA damage response in NSC function and maintenance.


Available from: Kaoru Tominaga, Apr 17, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The proliferation, cell cycle exit and differentiation of progenitor cells are controlled by several different factors. The chromodomain protein mortality factor 4-like 1 (Morf4l1) has been ascribed a role in both proliferation and differentiation. Little attention has been given to the existence of alternative splice variants of the Morf4l1 mRNA, which encode two Morf41l isoforms: a short isoform (S-Morf4l1) with an intact chromodomain and a long isoform (L-Morf4l1) with an insertion in or in the vicinity of the chromodomain. The aim of this study was to investigate if this alternative splicing has a function during development. We analysed the temporal and spatial distribution of the two mRNAs and over-expressed both isoforms in the developing retina. The results showed that the S-Morf4l1 mRNA is developmentally regulated. Over-expression of S-Morf4l1 using a retrovirus vector produced a clear phenotype with an increase of early-born neurons: retinal ganglion cells, horizontal cells and cone photoreceptor cells. Over-expression of L-Morf4l1 did not produce any distinguishable phenotype. The over-expression of S-Morf4l1 but not L-Morf4l1 also increased apoptosis in the infected regions. Our results suggest that the two Morf4l1 isoforms have different functions during retinogenesis and that Morf4l1 functions are fine-tuned by developmentally regulated alternative splicing. The data also suggest that Morf4l1 contributes to the regulation of cell genesis in the retina.
    Journal of Molecular Neuroscience 06/2013; 51(2). DOI:10.1007/s12031-013-0034-4 · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line. © 2015. Published by The Company of Biologists Ltd.
    Development 01/2015; 142(2):291-302. DOI:10.1242/dev.115147 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular senescence is a state of irreversible growth arrest and thought to be a tumor suppressive mechanism. In addition, it has been reported that cellular senescence may play an important role in wound healing, tissue remodeling, or-ganismal aging and age-related diseases. This loss of ability to divide, associated with senescence, is induced by factors that are intrinsic, such as genetically defined pathways and telomere erosion, and extrinsic eg. DNA damage, oxidative stress, over-expression of oncogenes and inadequate growth conditions. The p53/p21 and RB/p16 pathways are key to the cell cycle arrest associated with cellular senescence. Extensive molecular changes occur when cells become senescent, as gene expression profiling of senescent versus young cells has demonstrated, and this is, in part, due to alterations in chro-matin structure. Here, we review the molecular basis of the cell cycle arrest in cellular senescence, focusing on chromatin regulation. We also summarize our current knowledge of the role of cellular senescence in vivo.