International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations

Division of Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
Vaccine (Impact Factor: 3.49). 05/2011; 29(32):5203-9. DOI: 10.1016/j.vaccine.2011.05.025
Source: PubMed

ABSTRACT Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for HIV-1 and other pathogens have been shown to be limited by high titers of Ad5 neutralizing antibodies (NAbs) in the developing world. Alternative serotype rAd vectors have therefore been constructed. Here we report Ad5, Ad26, Ad35, and Ad48 NAb titers in 4381 individuals from North America, South America, sub-Saharan Africa, and Southeast Asia. As expected, Ad5 NAb titers were both frequent and high magnitude in sub-Saharan Africa and Southeast Asia. In contrast, Ad35 NAb titers proved infrequent and low in all regions studied, and Ad48 NAbs were rare in all regions except East Africa. Ad26 NAbs were moderately common in adults in sub-Saharan Africa and Southeast Asia, but Ad26 NAb titers proved markedly lower than Ad5 NAb titers in all regions, and these relatively low Ad26 NAb titers did not detectably suppress the immunogenicity of 4×10(10)vp of a rAd26-Gag/Pol/Env/Nef vaccine in rhesus monkeys. These data inform the clinical development of alternative serotype rAd vaccine vectors in the developing world.

Download full-text


Available from: Surita Roux, Mar 10, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
    Frontiers in Microbiology 08/2014; 5:439. DOI:10.3389/fmicb.2014.00439 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant Adenovirus (Ad) based vectors have been utilized extensively as a gene transfer platform in multiple pre-clinical and clinical applications. These applications are numerous, and inclusive of both gene therapy and vaccine based approaches to human or animal diseases. The widespread utilization of these vectors in both animal models, as well as numerous human clinical trials (Ad-based vectors surpass all other gene transfer vectors relative to numbers of patients treated, as well as number of clinical trials overall), has shed light on how this virus vector interacts with both the innate and adaptive immune systems. The ability to generate and administer large amounts of this vector likely contributes not only to their ability to allow for highly efficient gene transfer, but also their elicitation of host immune responses to the vector and/or the transgene the vector expresses in vivo. These facts, coupled with utilization of several models that allow for full detection of these responses has predicted several observations made in human trials, an important point as lack of similar capabilities by other vector systems may prevent detection of such responses until only after human trials are initiated. Finally, induction of innate or adaptive immune responses by Ad vectors may be detrimental in one setting (i.e., gene therapy) and be entirely beneficial in another (i.e., prophylactic or therapeutic vaccine based applications). Herein, we review the current understanding of innate and adaptive immune responses to Ad vectors, as well some recent advances that attempt to capitalize on this understanding so as to further broaden the safe and efficient use of Ad-based gene transfer therapies in general.
    Frontiers in Immunology 09/2011; 2:40. DOI:10.3389/fimmu.2011.00040
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the twentieth century vaccine development has moved from the use of attenuated or killed micro-organisms to protein sub-unit vaccines, with vaccine immunogenicity assessed by measuring antibodies induced by vaccination. However, for many infectious diseases T cells are an important part of naturally acquired protective immune responses, and inducing these by vaccination has been the aim of much research. The progress that has been made in developing effective T-cell-inducing vaccines against viral and parasitic diseases such as HIV and malaria is discussed, along with recent developments in therapeutic vaccine development for chronic viral infections and cancer. Although many ways of inducing T cells by vaccination have been assessed, the majority result in low level, non-protective responses. Sufficient clinical research has now been conducted to establish that replication-deficient viral vectored vaccines lead the field in inducing strong and broad responses, and efficacy studies of T-cell-inducing vaccines against a number of diseases are finally demonstrating that this is a valid approach to filling the gaps in our defence against not only infectious disease, but some forms of cancer.
    Immunology 10/2011; 135(1):19-26. DOI:10.1111/j.1365-2567.2011.03517.x · 3.74 Impact Factor