Article

Lactate MRSI and DCE MRI as surrogate markers of prostate tumor aggressiveness

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
NMR in Biomedicine (Impact Factor: 3.56). 01/2012; 25(1):113-22. DOI: 10.1002/nbm.1723
Source: PubMed

ABSTRACT Longitudinal studies of lactate MRSI and dynamic contrast-enhanced MRI were performed at 4.7 T in two prostate tumor models grown in rats, Dunning R3327-AT (AT) and Dunning R3327-H (H), to determine the potential of lactate and the perfusion/permeability parameter Ak(ep) as markers of tumor aggressiveness. Subcutaneous AT (n = 12) and H (n = 6) tumors were studied at different volumes between 100 and 2900 mm(3) (Groups 1-5). Lactate concentration was determined using selective multiple quantum coherence MRSI with the phantom substitution method. Tumor enhancement after the administration of gadolinium diethylenetriaminepenta-acetic acid was analyzed using the Brix-Hoffmann model and the Ak(ep) parameter was used as a measure of tumor perfusion/permeability. Lactate was not detected in the smallest AT tumors (Group 1; 100-270 mm(3) ). In larger AT tumors, the lactate concentration increased from 2.8 ± 1.0 mm (Group 2; 290-700 mm(3)) to 8.4 ± 2.9 mm (Group 3; 1000-1340 mm(3)) and 8.2 ± 2.2 mm (Group 4; 1380-1750 mm(3) ), and then decreased to 5.0 ± 1.7 mm (Group 5; 1900-2500 mm(3)), and was consistently higher in the tumor core than in the rim. Lactate was not detected in any of the H tumors. The mean tumor Ak(ep) values decreased with increasing volume in both tumor types, but were significantly higher in H tumors. In AT tumors, the Ak(ep) values were significantly higher in the rim than in the core. Histological hypoxic and necrotic fractions in AT tumors increased with volume from 0% in Group 1 to about 20% and 30%, respectively, in Group 5. Minimal amounts of hypoxia and necrosis were found in H tumors of all sizes. Thus, the presence of lactate and heterogeneous perfusion/permeability are signatures of aggressive, metabolically deprived tumors.

0 Bookmarks
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spectral degradations as a result of temporal field variations are observed in MRSI of the human prostate. Moving organs generate substantial temporal and spatial field fluctuations as a result of susceptibility mismatch with the surrounding tissue (i.e. periodic breathing, cardiac motion or random bowel motion). Nine patients with prostate cancer were scanned with an endorectal coil (ERC) on a 7-T MR scanner. Temporal B0 field variations were observed with fast dynamic B0 mapping in these patients. Simulations of dynamic B0 corrections were performed using zero- to second-order shim terms. In addition, the temporal B0 variations were applied to simulated MR spectra causing, on average, 15% underestimation of the choline/citrate ratio. Linewidth distortions and frequency shifts (up to 30 and 8 Hz, respectively) were observed. To demonstrate the concept of observing local field fluctuations in real time during MRSI data acquisition, a field probe (FP) tuned and matched for the 19 F frequency was incorporated into the housing of the ERC. The data acquired with the FP were compared with the B0 field map data and used to correct the MRSI datasets retrospectively. The dynamic B0 mapping data showed variations of up to 30 Hz (0.1 ppm) over 72 s at 7 T. The simulated zero-order corrections, calculated as the root mean square, reduced the standard deviation (SD) of the dynamic variations by an average of 41%. When using second-order corrections, the reduction in the SD was, on average, 56%. The FP data showed the same variation range as the dynamic B0 data and the variation patterns corresponded. After retrospective correction, the MRSI data showed artifact reduction and improved spectral resolution. B0 variations can degrade the MRSI substantially. The simple incorporation of an FP into an ERC can improve prostate cancer MRSI without prior knowledge of the origin of the dynamic field distortions. Copyright © 2014 John Wiley & Sons, Ltd.
    NMR in Biomedicine 11/2014; 27(11). DOI:10.1002/nbm.3197 · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To review current data available on use of prostate specific antigen for screening healthy men for prostate cancer.
    Current Urology 02/2013; 6(4):175-178. DOI:10.1159/000343535
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perfusion MRI has the potential to provide pathophysiological biomarkers for the evaluating, staging and therapy monitoring of prostate cancer. The objective of this study was to explore the feasibility of noninvasive arterial spin labeling (ASL) to detect prostate cancer in the peripheral zone and to investigate the correlation between the blood flow (BF) measured by ASL and the pharmacokinetic parameters Ktrans (forward volume transfer constant), kep (reverse reflux rate constant between extracellular space and plasma) and ve (the fractional volume of extracellular space per unit volume of tissue) measured by dynamic contrast-enhanced (DCE) MRI in patients with prostate cancer. Forty-three consecutive patients (ages ranging from 49 to 86 years, with a median age of 74 years) with pathologically confirmed prostate cancer were recruited. An ASL scan with four different inversion times (TI = 1000, 1200, 1400 and 1600 ms) and a DCE-MRI scan were performed on a clinical 3.0 T GE scanner. BF, Ktrans, kep and ve maps were calculated. In order to determine whether the BF values in the cancerous area were statistically different from those in the noncancerous area, an independent t-test was performed. Spearman's bivariate correlation was used to assess the relationship between BF and the pharmacokinetic parameters Ktrans, kep and ve. The mean BF values in the cancerous areas (97.1 ± 30.7, 114.7 ± 28.7, 102.3 ± 22.5, 91.2 ± 24.2 ml/100 g/min, respectively, for TI = 1000, 1200, 1400, 1600 ms) were significantly higher (p < 0.01 for all cases) than those in the noncancerous regions (35.8 ± 12.5, 42.2 ± 13.7, 53.5 ± 19.1, 48.5 ± 13.5 ml/100 g/min, respectively). Significant positive correlations (p < 0.01 for all cases) between BF and the pharmacokinetic parameters Ktrans, kep and ve were also observed for all four TI values (r = 0.671, 0.407, 0.666 for TI = 1000 ms; 0.713, 0.424, 0.698 for TI = 1200 ms; 0.604, 0.402, 0.595 for TI = 1400 ms; 0.605, 0.422, 0.548 for TI = 1600 ms). It can be seen that the quantitative ASL measurements show significant differences between cancerous and benign tissues, and exhibit strong to moderate correlations with the parameters obtained using DCE-MRI. These results show the promise of ASL as a noninvasive alternative to DCE-MRI. Copyright © 2014 John Wiley & Sons, Ltd.
    NMR in Biomedicine 07/2014; 27(7). DOI:10.1002/nbm.3124 · 3.56 Impact Factor