Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia.

Department of Microbiology and Immunology Department of Medicine, Division of Cardiology Department of Pathology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
Aging cell (Impact Factor: 7.55). 05/2011; 10(5):798-806. DOI: 10.1111/j.1474-9726.2011.00720.x
Source: PubMed

ABSTRACT Cellular senescence is an age-associated phenomenon that promotes tumor invasiveness owing to the secretion of proinflammatory cytokines, proteases, and growth factors. Herein we demonstrate that cellular senescence also potentially increases susceptibility to bacterial pneumonia caused by Streptococcus pneumoniae (the pneumococcus), the leading cause of infectious death in the elderly. Aged mice had increased lung inflammation as determined by cytokine analysis and histopathology of lung sections. Immunoblotting for p16, pRb, and mH2A showed that elderly humans and aged mice had increased levels of these senescence markers in their lungs vs. young controls. Keratin 10 (K10), laminin receptor (LR), and platelet-activating factor receptor (PAFr), host proteins known to be co-opted for bacterial adhesion, were also increased. Aged mice were found to be highly susceptible to pneumococcal challenge in a PsrP, the pneumococcal adhesin that binds K10, dependent manner. In vitro senescent A549 lung epithelial cells had elevated K10 and LR protein levels and were up to 5-fold more permissive for bacterial adhesion. Additionally, exposure of normal cells to conditioned media from senescent cells doubled PAFr levels and pneumococcal adherence. Genotoxic stress induced by bleomycin and oxidative stress enhanced susceptibility of young mice to pneumonia and was positively correlated with enhanced p16, inflammation, and LR levels. These findings suggest that cellular senescence facilitates bacterial adhesion to cells in the lungs and provides an additional molecular mechanism for the increased incidence of community-acquired pneumonia in the elderly. This study is the first to suggest a second negative consequence for the senescence-associated secretory phenotype.


Available from: Claude Le Saux, Mar 31, 2015

Click to see the full-text of:

Article: Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia.

2.7 MB

See full-text
  • [Show abstract] [Hide abstract]
    ABSTRACT: The progression of physiological ageing is driven by intracellular aberrations including telomere attrition, genomic instability, epigenetic alterations and loss of proteostasis. These in turn damage cells and compromise their functionality. Cellular senescence, a stable irreversible cell-cycle arrest, is elicited in damaged cells and prevents their propagation in the organism. Under normal conditions, senescent cells recruit the immune system which facilitates their removal from tissues. Nevertheless, during ageing, tissue-residing senescent cells tend to accumulate, and might negatively impact their microenvironment via profound secretory phenotype with pro-inflammatory characteristics, termed senescence-associated secretory phenotype (SASP). Indeed, senescent cells are mostly abundant at sites of age-related pathologies, including degenerative disorders and malignancies. Interestingly, studies on progeroid mice indicate that selective elimination of senescent cells can delay age-related deterioration. This suggests that chronic inflammation induced by senescent cells might be a main driver of these pathologies. Importantly, senescent cells accumulate as a result of deficient immune surveillance, and their removal is increased upon the use of immune stimulatory agents. Insights into mechanisms of senescence surveillance could be combined with current approaches for cancer immunotherapy to propose new preventive and therapeutic strategies for age-related diseases.
    Biogerontology 09/2014; DOI:10.1007/s10522-014-9529-9 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging of the world population and a concomitant increase in age-related diseases and disabilities mandates the search for strategies to increase healthspan, the length of time an individual lives healthy and productively. Due to the age-related decline of the immune system, infectious diseases remain among the top 5–10 causes of mortality and morbidity in the elderly, and improving immune function during aging remains an important aspect of healthspan extension. Calorie restriction (CR) and more recently rapamycin (rapa) feeding have both been used to extend lifespan in mice. Preciously few studies have actually investigated the impact of each of these interventions upon in vivo immune defense against relevant microbial challenge in old organisms. We tested how rapa and CR each impacted the immune system in adult and old mice. We report that each intervention differentially altered T-cell development in the thymus, peripheral T-cell maintenance, T-cell function and host survival after West Nile virus infection, inducing distinct but deleterious consequences to the aging immune system. We conclude that neither rapa feeding nor CR, in the current form/administration regimen, may be optimal strategies for extending healthy immune function and, with it, lifespan.
    Aging cell 11/2014; DOI:10.1111/acel.12280 · 7.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1 (Cav-1) is the major protein present in invaginations of the plasma membrane of cells known as caveolae. Cav-1 is expressed in numerous resident and inflammatory cells implicated in the pathogenesis of asthma and chronic inflammatory respiratory diseases including chronic obstructive pulmonary disease. A remarkable repertoire of functions has been identified for Cav-1 and these extend to, and have relevance to, asthma and chronic inflammatory respiratory diseases. Important processes influenced by Cav-1 include inflammation, fibrosis, smooth muscle contractility, regulation of apoptosis and cell senescence as well as epithelial barrier function and homeostasis. A better understanding of Cav-1 may be useful in developing new therapies for chronic inflammatory respiratory diseases.
    Expert Review of Respiratory Medicine 04/2014; DOI:10.1586/17476348.2014.905915