A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells.

Research Institute of Molecular Pathology, 1030 Vienna, Austria.
Molecular biology of the cell (Impact Factor: 5.98). 05/2011; 22(14):2634-45. DOI: 10.1091/mbc.E11-02-0146
Source: PubMed

ABSTRACT In mammals, silencing of one of the two X chromosomes in female cells compensates for the different number of X chromosomes between the sexes. The noncoding Xist RNA initiates X chromosome inactivation. Xist spreads from its transcription site over the X chromosome territory and triggers the formation of a repressive chromatin domain. To understand localization of Xist over one X chromosome we aimed to develop a system for investigating Xist in living cells. Here we report successful visualization of transgenically expressed MS2-tagged Xist in mouse embryonic stem cells. Imaging of Xist during an entire cell cycle shows that Xist spreads from a single point to a steady state when the chromosome is covered with a constant amount of Xist. Photobleaching experiments of the established Xist cluster indicate that chromosome-bound Xist is dynamic and turns over on the fully Xist covered chromosome. It appears that in interphase the loss of bound Xist and newly produced Xist are in equilibrium. We also show that the turnover of bound Xist requires transcription, and Xist binding becomes stable when transcription is inhibited. Our data reveal a strategy for visualizing Xist and indicate that spreading over the chromosome might involve dynamic binding and displacement.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke patients have impaired postural balance that increases the risk of falls and impairs their mobility. Assessment of postural balance is commonly carried out by recording centre of pressure (CoP) displacements, but the lack of data concerning reliability of these measures compromises their interpretation. The purpose of this study was to investigate the between-day reliability of six CoP-based variables, in order to provide i) reliability data for monitoring postural sway and weight-bearing asymmetry of stroke patients in clinical practice and ii) consistent assessment method of measurement error for applications in physical medicine and rehabilitation. Postural balance of 20 stroke patients was assessed in quiet standing on a force platform, in two sessions, 7 days apart. Six CoP-based variables were collected in eyes open and eyes closed conditions: postural sway was assessed with mean and standart deviation of CoP-velocity, CoP-velocity along the mediolateral and anteroposterior axes, and confidence ellipse area (CEAREA); weight-bearing asymmetry was assessed with mean CoP position along the mediolateral axis (CoPML). The intraclass correlation coefficient (ICC) was used to determine the level of agreement between test-retest. Small real difference (SRD), corresponding to the smallest change that indicates a real improvement for a single individual, was used to determine the extent of measurement error. ICCs were satisfactory (>0.9) for all CoP-based variables, except for CEAREA in eyes open condition and CoPML (<0.8). The SRDs (eyes open/closed conditions) were: 6.1/9.5 mm.s-1 for mean velocity; 12.3/12.2 mm.s-1 for standard deviation of CoP-velocity; 3.6/5.5 mm.s-1 and 4.9/7.3 mm.s-1 for CoP-velocity in mediolateral and anteroposterior axes, respectively; 17.4/21.4 mm for CoPML. Because CEAREA showed heteroscedasticity of measurement error distribution, SRD (eyes open/closed conditions) was expressed as a percentage (121/75%) and a ratio (3.68/2.16) obtained after log-antilog procedure. In clinical practice, the CoP-based velocity variables should be prefer to CEAREA to assess and monitor postural sway over time in hemiplegic stroke patients. The poor reliability of CoPML compromises its use to assess weight-bearing asymmetry. The procedure we used could be applied in reliability studies concerning other CoP-based variables or other biological variables in the field of physical medicine and rehabilitation.
    Journal of NeuroEngineering and Rehabilitation 03/2014; 11(1):39. · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome.
    PLoS ONE 12/2014; 9(12):e116109. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).
    Epigenetics & Chromatin 04/2014; 7(8). · 4.46 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014