Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer

Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
Molecular biology of the cell (Impact Factor: 5.98). 05/2011; 22(14):2423-35. DOI: 10.1091/mbc.E11-04-0306
Source: PubMed

ABSTRACT Reduced epithelial cadherin (E-cad) is a hallmark of invasive carcinomas that have acquired epithelial-mesenchymal transition (EMT) phenotypes. Here we show that down-regulated E-cad expression induced by transforming growth factor-β (TGF-β) and EMT preceded breast cancer outgrowth in three-dimensional (3D) organotypic assays and in the lungs of mice. Pharmacological inhibitors against focal adhesion kinase prevented metastatic outgrowth of newly seeded organoids, but not that of their fully established counterparts. Interrogating the D2-HAN (hyperplastic alveolar nodule) model of breast cancer dormancy and metastasis showed that dormant D2.OR cells produced branched organoid morphologies in 3D-cultures, and expressed robust quantities of E-cad that was uncoupled from regulation by TGF-β. In contrast, metastatic D2.A1 organoids were spherical and wholly lacked E-cad expression. Interestingly, D2.A1 cells engineered to re-express E-cad formed branched organoids, down-regulated β1 integrin expression, and failed to undergo metastatic outgrowth. The tumor-suppressing function of E-cad was inactivated by increased microenvironmental rigidity, and was not recapitulated by expression of an E-cad mutant lacking its extracellular domain. Twist expression, but not that of Snail, reinitiated metastatic outgrowth in dormant D2.OR cells. Our findings show that EMT and its down-regulated expression of E-cad circumvent breast cancer dormancy in part by facilitating β1 integrin expression necessary for metastatic outgrowth.

Download full-text


Available from: Molly A Taylor, Nov 20, 2014
  • Source
    • "Pulmonary tumor development was assessed by injection of parental (scrambled shRNA) and Mig6-deficient cells into the lateral tail vein of nu/nu mice (1 × 10 6 cells/mouse). Where indicated tumor growth and metastasis was monitored by in vivo bioluminescent imaging as previously described [1] [2] [18] [20] [22]. Bioluminescent images were captured on a Xenogen IVIS-200 (PerkinElmer). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous studies by our lab and others demonstrate that epidermal growth factor receptor (EGFR) plays critical roles in primary breast cancer (BC) initiation, growth and dissemination. However, clinical trials targeting EGFR function in BC have lead to disappointing results. In the current study we sought to identify the mechanisms responsible for this disparity by investigating the function of EGFR across the continuum of the metastatic cascade. We previously established that overexpression of EGFR is sufficient for formation of in situ primary tumors by otherwise nontransformed murine mammary gland cells. Induction of epithelial-mesenchymal transition (EMT) is sufficient to drive the metastasis of these EGFR-transformed tumors. Examining growth factor receptor expression across this and other models revealed a potent downregulation of EGFR through metastatic progression. Consistent with diminution of EGFR following EMT and metastasis EGF stimulation changes from a proliferative to an apoptotic response in in situ versus metastatic tumor cells, respectively. Furthermore, overexpression of EGFR in metastatic MDA-MB-231 BC cells promoted their antitumorigenic response to EGF in three dimensional (3D) metastatic outgrowth assays. In line with the paradoxical function of EGFR through EMT and metastasis we demonstrate that the EGFR inhibitory molecule, Mitogen Induced Gene-6 (Mig6), is tumor suppressive in in situ tumor cells. However, Mig6 expression is absolutely required for prevention of apoptosis and ultimate metastasis of MDA-MB-231 cells. Further understanding of the paradoxical function of EGFR between primary and metastatic tumors will be essential for application of its targeted molecular therapies in BC.
    Neoplasia (New York, N.Y.) 01/2015; 29(1). DOI:10.1016/j.neo.2014.11.009 · 5.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that functions to inhibit mammary tumorigenesis by directly inducing mammary epithelial cells (MECs) to undergo cell cycle arrest or apoptosis, and to secrete a variety of cytokines, growth factors, and extracellular matrix proteins that maintain cell and tissue homeostasis. Genetic and epigenetic events that transpire during mammary tumorigenesis typically inactivate the tumor suppressing activities of TGF-beta and ultimately confer this cytokine with tumor promoting activities, including the ability to stimulate breast cancer invasion, metastasis, angiogenesis, and evasion from the immune system. This dramatic conversion in TGF-beta function is known as the "TGF-beta paradox" and reflects a variety of dynamic alterations that occur not only within the developing mammary carcinoma, but also within the cellular and structural composition of its accompanying tumor microenvironment. Recent studies have begun to elucidate the critical importance of mammary tumor microenvironments in manifesting the TGF-beta paradox and influencing the response of developing mammary carcinomas to TGF-beta. Here we highlight recent findings demonstrating the essential function of tumor microenvironments in regulating the oncogenic activities of TGF-beta and its stimulation of metastatic progression during mammary tumorigenesis.
    Gene Expression 10/2011; 15(3):117-32. DOI:10.3727/105221611X13176664479322 · 1.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer is the most prevalent disease amongst women worldwide and metastasis is the main cause of death due to breast cancer. Metastatic breast cancer cells and embryonic stem (ES) cells display similar characteristics. However, unlike metastatic breast cancer cells, ES cells are nonmalignant. Furthermore, embryonic microenvironments have the potential to convert metastatic breast cancer cells into a less invasive phenotype. The creation of in vitro embryonic microenvironments will enable better understanding of ES cell-breast cancer cell interactions, help elucidate tumorigenesis, and lead to the restriction of breast cancer metastasis. In this article, we will present the characteristics of breast cancer cells and ES cells as well as their microenvironments, importance of embryonic microenvironments in inhibiting tumorigenesis, convergence of tumorigenic and embryonic signaling pathways, and state of the art in bioengineering embryonic microenvironments for breast cancer research. Additionally, the potential application of bioengineered embryonic microenvironments for the prevention and treatment of invasive breast cancer will be discussed.
    International Journal of Molecular Sciences 12/2011; 12(11):7662-91. DOI:10.3390/ijms12117662 · 2.86 Impact Factor
Show more