Article

Extensive mannose phosphorylation on leukemia inhibitory factor (LIF) controls its extracellular levels by multiple mechanisms.

Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2011; 286(28):24855-64. DOI: 10.1074/jbc.M111.221432
Source: PubMed

ABSTRACT In addition to soluble acid hydrolases, many nonlysosomal proteins have been shown to bear mannose 6-phosphate (Man-6-P) residues. Quantification of the extent of mannose phosphorylation and the relevance to physiological function, however, remain poorly defined. In this study, we investigated the mannose phosphorylation status of leukemia inhibitory factor (LIF), a previously identified high affinity ligand for the cation-independent mannose 6-phosphate receptor (CI-MPR), and we analyzed the effects of this modification on its secretion and uptake in cultured cells. When media from LIF-overexpressing cells were fractionated using a CI-MPR affinity column, 35-45% of the total LIF molecules were bound and specifically eluted with free Man-6-P thus confirming LIF as a bona fide Man-6-P-modified protein. Surprisingly, mass spectrometric analysis of LIF glycopeptides enriched on the CI-MPR column revealed that all six N-glycan sites could be Man-6-P-modified. The relative utilization of these sites, however, was not uniform. Analysis of glycan-deleted LIF mutants demonstrated that loss of glycans bearing the majority of Man-6-P residues leads to higher steady-state levels of secreted LIF. Using mouse embryonic stem cells, we showed that the mannose phosphorylation of LIF mediates its internalization thereby reducing extracellular levels and stimulating embryonic stem cell differentiation. Finally, immunofluorescence experiments indicate that LIF is targeted directly to lysosomes following its biosynthesis, providing another mechanism whereby mannose phosphorylation serves to control extracellular levels of LIF. Failure to modify LIF in the context of mucolipidosis II and its subsequent accumulation in the extracellular space may have important implications for disease pathogenesis.

0 Followers
 · 
110 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in lysosome biogenesis by targeting ∼60 different phosphomannosyl-containing acid hydrolases to the lysosome. This type I membrane glycoprotein has a large extracellular region comprised of 15 homologous domains. Two mannose 6-phosphate (M6P) binding sites have been mapped to domains 3 and 9, whereas domain 5 binds preferentially to the phosphodiester, M6P-GlcNAc. A structure-based sequence alignment predicts that the C-terminal domain 15 contains three out of the four conserved residues identified as essential for carbohydrate recognition by domains 3, 5 and 9 of the CI-MPR, but lacks two cysteine residues which are predicted to form a disulfide bond. To determine whether domain 15 of the CI-MPR has lectin activity and to probe its carbohydrate binding specificity, truncated forms of the CI-MPR were tested for binding to acid hydrolases with defined N-glycans in surface plasmon resonance analyses, and used to interrogate a phosphorylated glycan microarray. The results show that a construct encoding domains 14-15 binds both M6P and M6P-GlcNAc with similar affinity (Kd=13 µM and 17 µM, respectively). Site-directed mutagenesis studies demonstrate the essential role of the conserved Tyr residue in domain 15 for phosphomannosyl binding. A structural model of domain 15 was generated that predicted an Arg residue to be in the binding pocket and mutagenesis studies confirmed its important role in carbohydrate binding. Together, these results show that the CI-MPR contains a fourth carbohydrate recognition site capable of binding both phosphomonoesters and phosphodiesters. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    Glycobiology 01/2015; 25(6). DOI:10.1093/glycob/cwv001 · 3.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia inhibitory factor (LIF) is a multifunction cytokine that has various effects on different tissues and cell types in rodents and humans; however, its insufficiency has a relatively mild impact. This could explain why only some aspects of LIF activity are in the limelight, whereas other aspects are not well known. In this review, the LIF structure, signaling pathway, and primary roles in the development and function of an organism are reviewed, and the effects of LIF on stem cell growth and differentiation, which are important for its use in cell culturing, are described. The focus is on the roles of LIF in central nervous system development and on the modulation of its physiological functions as well as the involvement of LIF in the pathogenesis of brain diseases and injuries. Finally, LIF and its signaling pathway are discussed as potential targets of therapeutic interventions to influence both negative phenomena and regenerative processes following brain injury.
    Reviews in the neurosciences 04/2015; DOI:10.1515/revneuro-2014-0086 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukemia inhibitory factor (LIF) plays important roles in cellular proliferation, growth promotion and differentiation of various types of target cells. In addition, LIF influences bone metabolism, cachexia, neural development, embryogenesis and inflammation. Human LIF (hLIF) is an essential growth factor for the maintenance of mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in a pluripotent, undifferentiated state. In this experimental study, we cloned hLIF into the pENTR-D/ TOPO entry vector by a TOPO reaction. Next, hLIF was subcloned into the pDEST17 destination vector by the LR reaction, which resulted in the production of a construct that was transferred into E. coli strain Rosetta-gami™ 2(DE3) pLacI competent cells to produce the His6-hLIF fusion protein. This straightforward method produced a biologically active recombinant hLIF protein in E. coli that has long-term storage ability. This procedure has provided rapid, cost effective purification of a soluble hLIF protein that is biologically active and functional as measured in mouse ESCs and iPSCs in vitro. Our results showed no significant differences in function between laboratory produced and commercialized hLIF.
    Cell Journal 07/2013; 15(2):190-7. · 0.46 Impact Factor