Article

Extensive mannose phosphorylation on leukemia inhibitory factor (LIF) controls its extracellular levels by multiple mechanisms.

Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2011; 286(28):24855-64. DOI: 10.1074/jbc.M111.221432
Source: PubMed

ABSTRACT In addition to soluble acid hydrolases, many nonlysosomal proteins have been shown to bear mannose 6-phosphate (Man-6-P) residues. Quantification of the extent of mannose phosphorylation and the relevance to physiological function, however, remain poorly defined. In this study, we investigated the mannose phosphorylation status of leukemia inhibitory factor (LIF), a previously identified high affinity ligand for the cation-independent mannose 6-phosphate receptor (CI-MPR), and we analyzed the effects of this modification on its secretion and uptake in cultured cells. When media from LIF-overexpressing cells were fractionated using a CI-MPR affinity column, 35-45% of the total LIF molecules were bound and specifically eluted with free Man-6-P thus confirming LIF as a bona fide Man-6-P-modified protein. Surprisingly, mass spectrometric analysis of LIF glycopeptides enriched on the CI-MPR column revealed that all six N-glycan sites could be Man-6-P-modified. The relative utilization of these sites, however, was not uniform. Analysis of glycan-deleted LIF mutants demonstrated that loss of glycans bearing the majority of Man-6-P residues leads to higher steady-state levels of secreted LIF. Using mouse embryonic stem cells, we showed that the mannose phosphorylation of LIF mediates its internalization thereby reducing extracellular levels and stimulating embryonic stem cell differentiation. Finally, immunofluorescence experiments indicate that LIF is targeted directly to lysosomes following its biosynthesis, providing another mechanism whereby mannose phosphorylation serves to control extracellular levels of LIF. Failure to modify LIF in the context of mucolipidosis II and its subsequent accumulation in the extracellular space may have important implications for disease pathogenesis.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell-based therapy has the potential to treat an array of human diseases. However, to study the therapeutic potential and safety of these cells, a scalable cell culture medium is needed that is free of human or bovine-derived serum proteins. Thus, cost-effective recombinant serum proteins and cytokines are needed to produce such mediums. One such cytokine, Leukemia Inhibitory Factor (LIF), has been shown to be a critical paracrine factor that maintains stem cell pluripotency in murine embryonic stem cells and human naïve stem cells while simultaneously inhibiting differentiation. We recently produced recombinant human LIF (rhLIF) in a rice-based protein expression system known as ExpressTec. (12) We described expression of rice-derived rhLIF and demonstrated its biological equivalency to E. coli-derived rhLIF in traditional and embryonic mouse stem cell systems. Here we describe the expression yield of rice-derived rhLIF and the scale up production capacity. We provide further evidence of the efficacy of rice-derived rhLIF in additional stem cell systems including human neural stem cells and mouse induced pluripotent stem (iPS) cells. The expression level, biological activity, and potential for production at commercial scale of rice-derived rhLIF provides a proof-of-principal for ExpressTec-derived proteins to produce regulatory-friendly, high performance, and dependable stem cell mediums.
    Bioengineered. 04/2014; 5(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry (MS) has been a core technology for high sensitive and high-throughput analysis of the enriched glycoproteome in aspects of quantitative assays as well as qualitative profiling of glycoproteins. Because it has been widely recognized that aberrant glycosylation in a glycoprotein may involve in progression of a certain disease, the development of efficient analysis tool for the aberrant glycoproteins is very important for deep understanding about pathological function of the glycoprotein and new biomarker development. This review first describes the protein glycosylation-targeting enrichment technologies mainly employing solid-phase extraction methods such as hydrizide-capturing, lectin-specific capturing, and affinity separation techniques based on porous graphitized carbon, hydrophilic interaction chromatography, or immobilized boronic acid. Second, MS-based quantitative analysis strategies coupled with the protein glycosylation-targeting enrichment technologies, by using a label-free MS, stable isotope-labeling, or targeted multiple reaction monitoring (MRM) MS, are summarized with recent published studies. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Rapid Commun. Mass Spectrom.
    Mass Spectrometry Reviews 06/2014; 34(2). · 8.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays - e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc. - with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
    The Analyst 04/2014; · 3.91 Impact Factor